From ef97e28852771ffc63dd632780a55fce2bd043f4 Mon Sep 17 00:00:00 2001 From: KirisameVanilla <118162831+KirisameVanilla@users.noreply.github.com> Date: Tue, 2 Sep 2025 13:51:07 +0800 Subject: [PATCH] =?UTF-8?q?feat:=20make=20=E4=BF=A1=E5=AE=89=E6=95=B0?= =?UTF-8?q?=E5=AD=A6=E5=9F=BA=E7=A1=802=20paper?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../信息安全数学基础(二)/2024秋期末考试答案.md | 123 +++++++++++++++++ .../24FallFinalExam/2024秋期末考试答案.md | 67 ---------- .../24FallFinalExam/2024秋期末考试(部分)题目.md | 19 --- .../形式语言与自动机理论/index.md | 5 +- package-lock.json | 124 +++++++++--------- 5 files changed, 187 insertions(+), 151 deletions(-) create mode 100644 docs/courses/软件工程学院/信息安全数学基础(二)/2024秋期末考试答案.md delete mode 100644 docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试答案.md delete mode 100644 docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试(部分)题目.md diff --git a/docs/courses/软件工程学院/信息安全数学基础(二)/2024秋期末考试答案.md b/docs/courses/软件工程学院/信息安全数学基础(二)/2024秋期末考试答案.md new file mode 100644 index 0000000..8dba8c4 --- /dev/null +++ b/docs/courses/软件工程学院/信息安全数学基础(二)/2024秋期末考试答案.md @@ -0,0 +1,123 @@ +--- +title: 2024Fall_期末 +category: + - 软件工程学院 + - 课程资料 +tag: + - 试卷 +author: + - タクヤマ +--- + +## 说明 + +本学期(2024年秋季学期)的期末试卷难度**相当**低,本人评价为有手就行,故没有特意记忆所有题目,而是挑出一些有代表性的题目以供参考 + +我们这里再提供一道填空题,一道选择题,以显示这张卷子的**诚意** +
    +
  1. + + 设 $G$ 是一个群,对于 $\forall a,b \in G$, $a*b=b*a$, 则 $G$ 是 ____ 群 +
  2. +
  3. + + 设 $R$ 是一个环,对于 $\forall a,b \in R$, $a+b=b+a$, 则 $R$ 是? + A. 整环 B. 交换环 C. 含幺环 D. 环 +
  4. +
+ +很大程度上,老师的出题和给分是十分宽容的,请大家好好学习这门课程,**数学并不是妖魔鬼怪!** + +## 题目 + +> **1. 设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集** + +
+ +解: + +将 $G$ 中元素 $g$ 各个代入,计算 $gH$ + +- $g = e$: + $eH = H$ + +- $g = a$: + $aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,所以 $a^2$ 必须是 $G$ 中元素。 + 故 $a^2 = e$,则: $aH = \{ e, a \} = H$ + +- $g = b$: + $bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \}$, + 假设 $ba = c$ ,则: + $bH = \{ c, b \}$ + +- $g = c$: + $cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \}$, + 假设 $ca = b$ ,则: + $cH = \{ b, c \} = bH$ + +综上所述,H的所有子陪集是 $\{ e, a \}, \{ b, c \}$ + +
+ +*** + +> **2. 写出 $R=Z/6Z$ 的所有零因子** + +
+ +解: + + $R=Z/6Z \cong Z_6$,我们只要考虑 $Z_6$ 上的性质: + 显然有 $2\*3 \equiv 0 \pmod{6}, 4*3 \equiv 0 \pmod{6}$,所以零因子是2,3,4 + +
+ +*** + +> **3. 定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$** + +
+ +解: + + 直接计算即可,我们这里直接给出答案: $P+Q = (8, 15)$ , $2P = (14, 15)$ + +
+ +*** + +> **4. 求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元** + +
+ +解: + + 这时候有同学要问了,生成元怎么找啊?其实很简单,直接验证就可以了,(出于强大的直觉和观察力)我们在这里直接验证 $x$ : + + | $x^n$ | $x^n\pmod{x^4+x^3+1}$ | + | -------- | --------------------- | + | $x^0$ | $1$ | + | $x^1$ | $x$ | + | $x^2$ | $x^2$ | + | $x^3$ | $x^3$ | + | $x^4$ | $x^3 + 1$ | + | $x^5$ | $x^3 + x + 1$ | + | $x^6$ | $x^3 + x^2 + x + 1$ | + | $x^7$ | $1 + x^2 + x$ | + | $x^8$ | $x^2 + x + 1$ | + | $x^9$ | $x^3 + x^2 + x$ | + | $x^{10}$ | $x^3 + x^2 + x + 1$ | + | $x^{11}$ | $x^3 + x + 1$ | + | $x^{12}$ | $x^3 + 1$ | + | $x^{13}$ | $x^3$ | + | $x^{14}$ | $x^2$ | + +如上表,由 $x$ 生成的15个非零元素互不相等,所以 $x$ 确实是生成元,非零元的表示如表中所示 + +
+ +*** + +> **5. 证明:有限环的特征一定不为0** + +证明:请参考课件Chap7.pdf中27-28页 diff --git a/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试答案.md b/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试答案.md deleted file mode 100644 index 5641ec1..0000000 --- a/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试答案.md +++ /dev/null @@ -1,67 +0,0 @@ -# 答案 - -## - -### 1.设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集 - -解: - 将 $G$ 中元素 $g$ 各个代入,计算 $gH$ - -- $g = e$: - $eH = H$ - -- $g = a$: - $aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,所以 $a^2$ 必须是 $G$ 中元素。 - 故 $a^2 = e$,则: $aH = \{ e, a \} = H$ - -- $g = b$: - $bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \}$, - 假设 $ba = c$ ,则: - $bH = \{ c, b \}$ - -- $g = c$: - $cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \}$, - 假设 $ca = b$ ,则: - $cH = \{ b, c \} = bH$ - -综上所述,H的所有子陪集是 $\{ e, a \}, \{ b, c \}$ - -**2.写出 $R=Z/6Z$ 的所有零因子** - -解: - $R=Z/6Z \cong Z_6$,我们只要考虑 $Z_6$ 上的性质: - 显然有 $2\*3 \equiv 0 \pmod{6}, 4*3 \equiv 0 \pmod{6}$,所以零因子是2,3,4 - -**3.定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$** - -解: - 直接计算即可,我们这里直接给出答案: $P+Q = (8, 15)$ , $2P = (14, 15)$ - -**4.求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元** - -解: - 这时候有同学要问了,生成元怎么找啊?其实很简单,直接验证就可以了,(出于强大的直觉和观察力)我们在这里直接验证 $x$ : - - | $x^n$ | $x^n\pmod{x^4+x^3+1}$ | - |------|----------| - | $x^0$ | $1$ | - | $x^1$ | $x$ | - | $x^2$ | $x^2$ | - | $x^3$ | $x^3$ | - | $x^4$ | $x^3 + 1$ | - | $x^5$ | $x^3 + x + 1$ | - | $x^6$ | $x^3 + x^2 + x + 1$ | - | $x^7$ | $1 + x^2 + x$ | - | $x^8$ | $x^2 + x + 1$ | - | $x^9$ | $x^3 + x^2 + x$ | - | $x^{10}$ | $x^3 + x^2 + x + 1$ | - | $x^{11}$ | $x^3 + x + 1$ | - | $x^{12}$ | $x^3 + 1$ | - | $x^{13}$ | $x^3$ | - | $x^{14}$ | $x^2$ | - -如上表,由 $x$ 生成的15个非零元素互不相等,所以 $x$ 确实是生成元,非零元的表示如表中所示 - -### 5.证明:有限环的特征一定不为0 - -证明:请参考课件Chap7.pdf中27-28页 diff --git a/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试(部分)题目.md b/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试(部分)题目.md deleted file mode 100644 index 4499a66..0000000 --- a/docs/courses/软件工程学院/信息安全数学基础(二)/24FallFinalExam/2024秋期末考试(部分)题目.md +++ /dev/null @@ -1,19 +0,0 @@ -## 说明: -本学期(2024年秋季学期)的期末试卷难度**相当**低,本人评价为有手就行,故没有特意记忆所有题目,而是挑出一些有代表性的题目以供参考 - -
    -
  1. 设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集
  2. -
  3. 写出 $R=Z/6Z$ 的所有零因子
  4. -
  5. 定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$
  6. -
  7. 求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元
  8. -
  9. 证明:有限环的特征一定不为0
  10. -
- -我们这里再提供一道填空题,一道选择题,以显示这张卷子的**诚意** -
    -
  1. 设 $G$ 是一个群,对于 $\forall a,b \in G$, $a*b=b*a$, 则 $G$ 是 ____ 群
  2. -
  3. 设 $R$ 是一个环,对于 $\forall a,b \in R$, $a+b=b+a$, 则 $R$ 是? - A. 整环 B.交换环 C.含幺环 D.环
  4. -
- -很大程度上,老师的出题和给分是十分宽容的,请大家好好学习这门课程,**数学并不是妖魔鬼怪!** diff --git a/docs/courses/软件工程学院/形式语言与自动机理论/index.md b/docs/courses/软件工程学院/形式语言与自动机理论/index.md index e248e6d..ccbb1c4 100644 --- a/docs/courses/软件工程学院/形式语言与自动机理论/index.md +++ b/docs/courses/软件工程学院/形式语言与自动机理论/index.md @@ -1,5 +1,5 @@ --- -title: 信息安全数学基础(二) +title: 形式语言与自动机理论 category: - 软件工程学院 - 课程评价 @@ -9,5 +9,4 @@ tag: - 抽象代数 --- -### 这门课是抽象代数,但是并没有涉及到抽象代数真正复杂的部分,较为浅尝辄止,所以课程本身的学习难度并不高。 -### 同样地,这门课实际考试不难,老师会捞,请大家不要害怕。 + diff --git a/package-lock.json b/package-lock.json index b42a27d..bb8546b 100644 --- a/package-lock.json +++ b/package-lock.json @@ -1846,76 +1846,76 @@ ] }, "node_modules/@shikijs/core": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/core/-/core-3.12.0.tgz", - "integrity": "sha512-rPfCBd6gHIKBPpf2hKKWn2ISPSrmRKAFi+bYDjvZHpzs3zlksWvEwaF3Z4jnvW+xHxSRef7qDooIJkY0RpA9EA==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/core/-/core-3.12.1.tgz", + "integrity": "sha512-j9+UDQ6M50xvaSR/e9lg212H0Fqxy3lYd39Q6YITYQxfrb5VYNUKPLZp4PN9f+YmRcdpyNAm3obn/tIZ2WkUWg==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/types": "3.12.0", + "@shikijs/types": "3.12.1", "@shikijs/vscode-textmate": "^10.0.2", "@types/hast": "^3.0.4", "hast-util-to-html": "^9.0.5" } }, "node_modules/@shikijs/engine-javascript": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/engine-javascript/-/engine-javascript-3.12.0.tgz", - "integrity": "sha512-Ni3nm4lnKxyKaDoXQQJYEayX052BL7D0ikU5laHp+ynxPpIF1WIwyhzrMU6WDN7AoAfggVR4Xqx3WN+JTS+BvA==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/engine-javascript/-/engine-javascript-3.12.1.tgz", + "integrity": "sha512-mwif5T3rEBSMn/1m9dNi4WmB4dxH4VfYqreQMLpbFYov8MM3Gus98I549amFMjtEmYDAkTKGP7bmsv1n9t9I+A==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/types": "3.12.0", + "@shikijs/types": "3.12.1", "@shikijs/vscode-textmate": "^10.0.2", "oniguruma-to-es": "^4.3.3" } }, "node_modules/@shikijs/engine-oniguruma": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/engine-oniguruma/-/engine-oniguruma-3.12.0.tgz", - "integrity": "sha512-IfDl3oXPbJ/Jr2K8mLeQVpnF+FxjAc7ZPDkgr38uEw/Bg3u638neSrpwqOTnTHXt1aU0Fk1/J+/RBdst1kVqLg==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/engine-oniguruma/-/engine-oniguruma-3.12.1.tgz", + "integrity": "sha512-hbYq+XOc55CU7Irkhsgwh8WgQbx2W5IVzHV4l+wZ874olMLSNg5o3F73vo9m4SAhimFyqq/86xnx9h+T30HhhQ==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/types": "3.12.0", + "@shikijs/types": "3.12.1", "@shikijs/vscode-textmate": "^10.0.2" } }, "node_modules/@shikijs/langs": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/langs/-/langs-3.12.0.tgz", - "integrity": "sha512-HIca0daEySJ8zuy9bdrtcBPhcYBo8wR1dyHk1vKrOuwDsITtZuQeGhEkcEfWc6IDyTcom7LRFCH6P7ljGSCEiQ==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/langs/-/langs-3.12.1.tgz", + "integrity": "sha512-Y1MbMfVO5baRz7Boo7EoD36TmzfUx/I5n8e+wZumx6SlUA81Zj1ZwNJL871iIuSHrdsheV4AxJtHQ9mlooklmg==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/types": "3.12.0" + "@shikijs/types": "3.12.1" } }, "node_modules/@shikijs/themes": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/themes/-/themes-3.12.0.tgz", - "integrity": "sha512-/lxvQxSI5s4qZLV/AuFaA4Wt61t/0Oka/P9Lmpr1UV+HydNCczO3DMHOC/CsXCCpbv4Zq8sMD0cDa7mvaVoj0Q==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/themes/-/themes-3.12.1.tgz", + "integrity": "sha512-9JrAm9cA5hqM/YXymA3oAAZdnCgQf1zyrNDtsnM105nNEoEpux4dyzdoOjc2KawEKj1iUs/WH2ota6Atp7GYkQ==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/types": "3.12.0" + "@shikijs/types": "3.12.1" } }, "node_modules/@shikijs/transformers": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/transformers/-/transformers-3.12.0.tgz", - "integrity": "sha512-HcJwlvMAyZzOY+ayEAGE891BdJ7Vtio+qdWUTF9ki4d0LIkDb6DBz8ynOWGAEglHv6eQs/WcAWf/h6ina6IgCw==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/transformers/-/transformers-3.12.1.tgz", + "integrity": "sha512-crGh3cSZf6mwg3K2W8i79Ja+q4tVClRHdHLnUGi5arS58+cqdzsbkrEZBDMyevf9ehmjFUWDTEwCMEyp9I3z0g==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/core": "3.12.0", - "@shikijs/types": "3.12.0" + "@shikijs/core": "3.12.1", + "@shikijs/types": "3.12.1" } }, "node_modules/@shikijs/types": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/@shikijs/types/-/types-3.12.0.tgz", - "integrity": "sha512-jsFzm8hCeTINC3OCmTZdhR9DOl/foJWplH2Px0bTi4m8z59fnsueLsweX82oGcjRQ7mfQAluQYKGoH2VzsWY4A==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/@shikijs/types/-/types-3.12.1.tgz", + "integrity": "sha512-Is/p+1vTss22LIsGCJTmGrxu7ZC1iBL9doJFYLaZ4aI8d0VDXb7Mn0kBzhkc7pdsRpmUbQLQ5HXwNpa3H6F8og==", "dev": true, "license": "MIT", "dependencies": { @@ -2912,6 +2912,16 @@ "vuepress": "2.0.0-rc.24" } }, + "node_modules/@vuepress/plugin-redirect/node_modules/commander": { + "version": "14.0.0", + "resolved": "https://registry.npmjs.org/commander/-/commander-14.0.0.tgz", + "integrity": "sha512-2uM9rYjPvyq39NwLRqaiLtWHyDC1FvryJDa2ATTVims5YAS4PupsEQsDvP14FqhFr0P49CYDugi59xaxJlTXRA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=20" + } + }, "node_modules/@vuepress/plugin-rtl": { "version": "2.0.0-rc.112", "resolved": "https://registry.npmjs.org/@vuepress/plugin-rtl/-/plugin-rtl-2.0.0-rc.112.tgz", @@ -3070,15 +3080,15 @@ } }, "node_modules/@vueuse/core": { - "version": "13.8.0", - "resolved": "https://registry.npmjs.org/@vueuse/core/-/core-13.8.0.tgz", - "integrity": "sha512-rmBcgpEpxY0ZmyQQR94q1qkUcHREiLxQwNyWrtjMDipD0WTH/JBcAt0gdcn2PsH0SA76ec291cHFngmyaBhlxA==", + "version": "13.9.0", + "resolved": "https://registry.npmjs.org/@vueuse/core/-/core-13.9.0.tgz", + "integrity": "sha512-ts3regBQyURfCE2BcytLqzm8+MmLlo5Ln/KLoxDVcsZ2gzIwVNnQpQOL/UKV8alUqjSZOlpFZcRNsLRqj+OzyA==", "dev": true, "license": "MIT", "dependencies": { "@types/web-bluetooth": "^0.0.21", - "@vueuse/metadata": "13.8.0", - "@vueuse/shared": "13.8.0" + "@vueuse/metadata": "13.9.0", + "@vueuse/shared": "13.9.0" }, "funding": { "url": "https://github.com/sponsors/antfu" @@ -3088,9 +3098,9 @@ } }, "node_modules/@vueuse/metadata": { - "version": "13.8.0", - "resolved": "https://registry.npmjs.org/@vueuse/metadata/-/metadata-13.8.0.tgz", - "integrity": "sha512-BYMp3Gp1kBUPv7AfQnJYP96mkX7g7cKdTIgwv/Jgd+pfQhz678naoZOAcknRtPLP4cFblDDW7rF4e3KFa+PfIA==", + "version": "13.9.0", + "resolved": "https://registry.npmjs.org/@vueuse/metadata/-/metadata-13.9.0.tgz", + "integrity": "sha512-1AFRvuiGphfF7yWixZa0KwjYH8ulyjDCC0aFgrGRz8+P4kvDFSdXLVfTk5xAN9wEuD1J6z4/myMoYbnHoX07zg==", "dev": true, "license": "MIT", "funding": { @@ -3098,9 +3108,9 @@ } }, "node_modules/@vueuse/shared": { - "version": "13.8.0", - "resolved": "https://registry.npmjs.org/@vueuse/shared/-/shared-13.8.0.tgz", - "integrity": "sha512-x4nfM0ykW+RmNJ4/1IzZsuLuWWrNTxlTWUiehTGI54wnOxIgI9EDdu/O5S77ac6hvQ3hk2KpOVFHaM0M796Kbw==", + "version": "13.9.0", + "resolved": "https://registry.npmjs.org/@vueuse/shared/-/shared-13.9.0.tgz", + "integrity": "sha512-e89uuTLMh0U5cZ9iDpEI2senqPGfbPRTHM/0AaQkcxnpqjkZqDYP8rpfm7edOz8s+pOCOROEy1PIveSW8+fL5g==", "dev": true, "license": "MIT", "funding": { @@ -3591,13 +3601,13 @@ } }, "node_modules/commander": { - "version": "14.0.0", - "resolved": "https://registry.npmjs.org/commander/-/commander-14.0.0.tgz", - "integrity": "sha512-2uM9rYjPvyq39NwLRqaiLtWHyDC1FvryJDa2ATTVims5YAS4PupsEQsDvP14FqhFr0P49CYDugi59xaxJlTXRA==", + "version": "8.3.0", + "resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz", + "integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==", "dev": true, "license": "MIT", "engines": { - "node": ">=20" + "node": ">= 12" } }, "node_modules/connect-history-api-fallback": { @@ -4533,16 +4543,6 @@ "katex": "cli.js" } }, - "node_modules/katex/node_modules/commander": { - "version": "8.3.0", - "resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz", - "integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">= 12" - } - }, "node_modules/kind-of": { "version": "6.0.3", "resolved": "https://registry.npmjs.org/kind-of/-/kind-of-6.0.3.tgz", @@ -5929,18 +5929,18 @@ "license": "ISC" }, "node_modules/shiki": { - "version": "3.12.0", - "resolved": "https://registry.npmjs.org/shiki/-/shiki-3.12.0.tgz", - "integrity": "sha512-E+ke51tciraTHpaXYXfqnPZFSViKHhSQ3fiugThlfs/om/EonlQ0hSldcqgzOWWqX6PcjkKKzFgrjIaiPAXoaA==", + "version": "3.12.1", + "resolved": "https://registry.npmjs.org/shiki/-/shiki-3.12.1.tgz", + "integrity": "sha512-eMlxVaXyuNQAQCaMtDKQjKv0eVm+kA6fsZtv9UqKgspP+7lWCVi7SoN+cJq1dawvIDQY7TI3SixamztotM6R6Q==", "dev": true, "license": "MIT", "dependencies": { - "@shikijs/core": "3.12.0", - "@shikijs/engine-javascript": "3.12.0", - "@shikijs/engine-oniguruma": "3.12.0", - "@shikijs/langs": "3.12.0", - "@shikijs/themes": "3.12.0", - "@shikijs/types": "3.12.0", + "@shikijs/core": "3.12.1", + "@shikijs/engine-javascript": "3.12.1", + "@shikijs/engine-oniguruma": "3.12.1", + "@shikijs/langs": "3.12.1", + "@shikijs/themes": "3.12.1", + "@shikijs/types": "3.12.1", "@shikijs/vscode-textmate": "^10.0.2", "@types/hast": "^3.0.4" }