Introduction to the Theory of Computation

XU Ming

School of Software Engineering, East China Normal University

March 10, 2025

OUTLINE

- Finite Automata with ϵ -Transition
- Regular Expressions

Finite Automata with ϵ -Transition

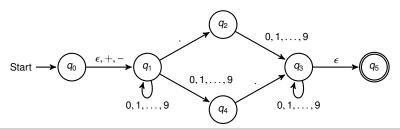
Use of ϵ -Transition

In order to add "programming convenience", we will extend NFA to ϵ -NFA. In transition diagrams of such NFA, the empty string ϵ is allowed as a label.

However, this new capability does not expand the class of language that can be accepted by finite automata.

4/30

Design an automaton A_3 accepting decimal numbers consisting of (1) an optional + or - sign, (2) a string of digits, (3) a decimal point, and (4) another strings of digits. One of the strings (2) and (4) is optional, but not both empty.



Definition of ϵ -NFA

A nondeterministic finite automaton with ϵ -transition is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is a finite set of input symbols (an alphabet),
- δ is a transition function from $Q \times (\Sigma \cup \{\epsilon\})$ to the powerset of Q,
- $q_0 \in Q$ is a start state,
- $F \subseteq Q$ is a set of final or accepting states.

XU Ming (ECNU)

The NFA A_3 is an ϵ -NFA, which can be represented as

$$A_3 = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{., +, -, 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

where the transition table for δ is

	ϵ	+,-		1,,9
$\rightarrow q_0$	{ q ₁ }	{ q ₁ }	Ø	Ø
q_1	Ø	Ø	{ q ₂ }	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	{ q ₃ }
q 3	{ q ₅ }	Ø	Ø	{ q ₃ }
q_4	Ø	Ø	{ q ₃ }	Ø
$\bigstar q_5$	Ø	Ø	Ø	Ø

XU Ming (ECNU)

ϵ-Closures

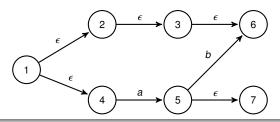
Informally, the ϵ -closures of a state q is the set consisting of q and other states by following all transitions out of q that are labeled ϵ .

The recursive definition of the ϵ -closures ECLOSE(q) is given below.

Basis step: $q \in ECLOSE(q)$.

Inductive step: If $p \in ECLOSE(q)$, then $\delta(p, \epsilon) \subseteq ECLOSE(q)$.

For the collection of states, which may be part of some ϵ -NFA, construct ECLOSE(1) and ECLOSE(5).



Solution $ECLOSE(1) = \{1, 2, 3, 4, 6\}, ECLOSE(5) = \{5, 7\}.$

Extended Transition Function

The transition function δ of an ϵ -NFA can be extended to $\hat{\delta}$:

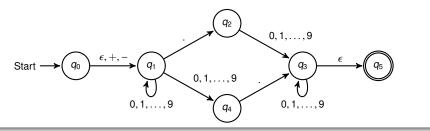
Basis step:
$$\hat{\delta}(q, \epsilon) = \mathsf{ECLOSE}(q)$$
.

Inductive step: Suppose w = xa, then

$$\hat{\delta}(q, w) = \bigcup_{r \in \delta(\hat{\delta}(q, x), a)} \mathsf{ECLOSE}(r)$$

where $\delta(S, a) = \bigcup_{p \in S} \delta(p, a)$.

Compute $\hat{\delta}(q_0, 5.6)$ for the ϵ -NFA A_3 .



- $\hat{\delta}(q_0, \epsilon) = \mathsf{ECLOSE}(q_0) = \{q_0, q_1\}.$
- Since $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\},$ $\hat{\delta}(q_0, 5) = \mathsf{ECLOSE}(q_1) \cup \mathsf{ECLOSE}(q_4) = \{q_1, q_4\}.$
- Since $\delta(q_1,.) \cup \delta(q_4,.) = \{q_2, q_3\},$ $\hat{\delta}(q_0,5.) = \mathsf{ECLOSE}(q_2) \cup \mathsf{ECLOSE}(q_3) = \{q_2, q_3, q_5\}.$
- Since $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\},$ $\hat{\delta}(q_0, 5.6) = \mathsf{ECLOSE}(q_3) = \{q_3, q_5\}.$

12/30

XU Ming (ECNU) Lecture 04

Language of ϵ -NFA

The language of an ϵ -NFA $A = (Q, \Sigma, \delta, q_0, F)$ is defined by

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

Example

For $A_3 = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, \dots, 9\}, \delta, q_0, \{q_5\})$, the string 5.6 is in the language of A_3 , since $\hat{\delta}(q_0, 5.6)$ contains the accepting state q_5 .

XU Ming (ECNU)

Equivalence of DFA and ϵ -NFA

Given any ϵ -NFA E, we can find a DFA D that accepts the same language as E. The construction is very close to the subset construction, as the states of D are subsets of the states of E.

Let ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$, we will construct an equivalent DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$.

14/30

XU Ming (ECNU)

Here is the detail of the construction.

•
$$Q_D = \{S \mid S \subseteq Q_E, S = \mathsf{ECLOSE}(S)\}$$

- $q_D = \mathsf{ECLOSE}(q_0)$
- $F_D = \{S \mid S \in Q_D, S \cap F_E \neq \emptyset\}$
- For every $S \in Q_D$ and $a \in \Sigma$,

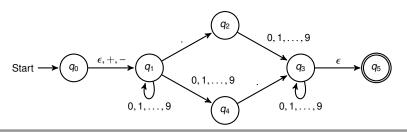
$$\delta_D(S,a) = \bigcup_{r \in \delta_E(S,a)} \mathsf{ECLOSE}(r)$$

where
$$\delta_E(S, a) = \bigcup_{p \in S} \delta_E(p, a)$$
.

In general, $Q_D \neq 2^{Q_E}$.

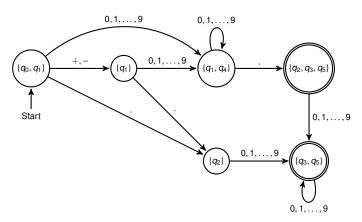
Example

Eliminate ϵ -transition and construct an DFA from the ϵ -NFA A_3



XU Ming (ECNU)

The dead state \emptyset and all transitions to it are omitted.



Theorem 2.3

A language L is accepted by some ϵ -NFA if and only if L is accepted by some DFA.

Proof (if) This direction is easy. Suppose L=L(D) for some DFA. Turn D into an ϵ -NFA E by adding transition $\delta_E(q,\epsilon)=\emptyset$ for all states q of D. (only-if) Let $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$ is an ϵ -NFA. Apply the modified subset construction described above to produce the DFA $D=(Q_D,\Sigma,\delta_D,q_D,F_D)$. We show

$$\hat{\delta}_E(q_0, w) = \hat{\delta}_D(q_D, w)$$

by induction on |w|.

XU Ming (ECNU)

Basis step:
$$\hat{\delta}_E(q_0, \epsilon) = \mathsf{ECLOSE}(q_0) = q_D = \hat{\delta}_D(q_D, \epsilon)$$
.

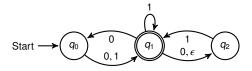
Inductive step:

$$\begin{split} \hat{\delta}_E(q_0,xa) &= \bigcup_{p \in \delta_E(\hat{\delta}_E(q_0,x),a)} \mathsf{ECLOSE}(p) & (\mathsf{definition} \ \mathsf{of} \ \hat{\delta}_E) \\ &= \bigcup_{p \in \delta_E(\hat{\delta}_D(q_D,x),a)} \mathsf{ECLOSE}(p) & (\mathsf{induction} \ \mathsf{hypothesis}) \\ &= \delta_D(\hat{\delta}_D(q_D,x),a) & (\mathsf{modified} \ \mathsf{subset} \ \mathsf{construction}) \\ &= \hat{\delta}_D(q_D,xa) & (\mathsf{definition} \ \mathsf{of} \ \hat{\delta}_D) \end{split}$$

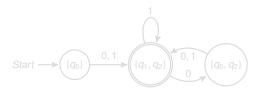
◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ 夕 ♀ ○

19/30

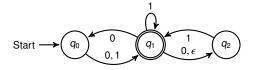
Convert the following ϵ -NFA into an equivalent DFA.



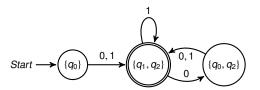
Solution



Convert the following ϵ -NFA into an equivalent DFA.



Solution



Regular Expressions

Regular expressions denote languages, e.g.

$$01^* + 10^*$$

- A regular expression is a "user-friendly", declarative way of describing a regular language.
- A FA (DFA or NFA) is a "blueprint" for constructing a machine recognizing a regular language.



22/30

XU Ming (ECNU) Lecture 04

Building Regular Expressions

Inductive definition of regular expression (RE) and its language.

Basis step:

 \bullet and \emptyset are regular expression

$$L(\epsilon) = \{\epsilon\}, \quad L(\emptyset) = \emptyset.$$

• If $a \in \Sigma$, then **a** is a regular expression

$$L(a) = \{a\}.$$

Inductive step:

If E is a regular expression, then (E) is a regular expression

$$L((E)) = L(E).$$

• If E and F are regular expression, then E + F is a regular expression

$$L(E+F)=L(E)\cup L(F).$$

• If E and F are regular expression, then E.F is a regular expression

$$L(E.F) = L(E).L(F).$$

• If E is a regular expression, then E^* is a regular expression

$$L(E^*) = (L(E))^*.$$

XU Ming (ECNU)

Precedence of Regular Expression Operators

- The star operator is of highest precedence.
- Next in precedence comes the concatenation or dot operator.
- Finally, all unions or plus operators are grouped with their operands.

Example

 $01^* + 1$ is grouped as $(0(1^*)) + 1$.

Languages Associated with Regular Expressions

Example

The expression $R = (\mathbf{aa})^*(\mathbf{bb})^*\mathbf{b}$ denoted the set of all strings with an even number of a's followed by an odd number of b's; that is

$$L(R) = \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}.$$

Example

Exhibit the language $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b}))$ in set notation.

Solution

Since $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b})) = L(\mathbf{a}^*)(L(\mathbf{a} + \mathbf{b})) = (L(\mathbf{a}))^*(L(\mathbf{a}) \cup L(\mathbf{b}))$. So the answer is $\{a, aa, aaa, ...; b, ab, aab, ...\}$.

Languages Associated with Regular Expressions

Example

The expression $R = (\mathbf{aa})^*(\mathbf{bb})^*\mathbf{b}$ denoted the set of all strings with an even number of a's followed by an odd number of b's; that is

$$L(R) = \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}.$$

Example

Exhibit the language $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b}))$ in set notation.

Solution

Since $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b})) = L(\mathbf{a}^*)(L(\mathbf{a} + \mathbf{b})) = (L(\mathbf{a}))^*(L(\mathbf{a}) \cup L(\mathbf{b}))$. So the answer is $\{a, aa, aaa, ...; b, ab, aab, ...\}$.

Languages Associated with Regular Expressions

Example

The expression $R = (\mathbf{aa})^*(\mathbf{bb})^*\mathbf{b}$ denoted the set of all strings with an even number of a's followed by an odd number of b's; that is

$$L(R) = \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}.$$

Example

Exhibit the language $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b}))$ in set notation.

Solution

Since $L(\mathbf{a}^*(\mathbf{a} + \mathbf{b})) = L(\mathbf{a}^*)(L(\mathbf{a} + \mathbf{b})) = (L(\mathbf{a}))^*(L(\mathbf{a}) \cup L(\mathbf{b}))$. So the answer is $\{a, aa, aaa, ...; b, ab, aab, ...\}$.

Going from an informal description or set notation to a regular expression tends to be a little harder.

Example

Write a regular expression for the set of strings that consist of alternating 0's and 1's.

Solution

$$(01)^* + (10)^* + 1(01)^* + 0(10)^*,$$

or equivalently

$$(\epsilon + 1)(01)^*(\epsilon + 0).$$

Going from an informal description or set notation to a regular expression tends to be a little harder.

Example

Write a regular expression for the set of strings that consist of alternating 0's and 1's.

Solution

$$(01)^* + (10)^* + 1(01)^* + 0(10)^*,$$

or equivalently

$$(\epsilon + 1)(01)^*(\epsilon + 0).$$

Find a regular expression for the language

 $L = \{w \in \{0, 1\}^* \mid w \text{ has no pair of consecutive zeros}\}.$

Solution

One observation is that whenever a 0 occurs, it must be followed immediately by a 1. This suggests (1*011*)*. However, the answer is still incomplete, since the strings ending in 0 or consisting of all 1's are unaccounted for.

So the correct answer is $(1*011*)*(0 + \epsilon) + 1*(0 + \epsilon)$.

Another shorter answer is $(1 + 01)^*(0 + \epsilon)$.

Find a regular expression for the language $L = \{w \in \{0, 1\}^* \mid w \text{ has no pair of consecutive zeros}\}.$

Solution

One observation is that whenever a 0 occurs, it must be followed immediately by a 1. This suggests (1*011*)*. However, the answer is still incomplete, since the strings ending in 0 or consisting of all 1's are unaccounted for.

So the correct answer is $(1^*011^*)^*(0+\epsilon) + 1^*(0+\epsilon)$.

Another shorter answer is $(1 + 01)^*(0 + \epsilon)$.

Find a regular expression that denotes all bit strings whose value, when interpreted as binary integer, is great than or equal to 40.

Solution

The bit string must be at least 6 bits long. If it is longer than 6 bits, its value is at least 64, so anything will do. If it is exactly 6 bits, then either the second bit from the left (16) or the third bit from the left (8) must be 1. So the solution is

$$(111 + 110 + 101)(0 + 1)(0 + 1)(0 + 1) + 1(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)$$

Find a regular expression that denotes all bit strings whose value, when interpreted as binary integer, is great than or equal to 40.

Solution

The bit string must be at least 6 bits long. If it is longer than 6 bits, its value is at least 64, so anything will do. If it is exactly 6 bits, then either the second bit from the left (16) or the third bit from the left (8) must be 1. So the solution is

$$(111 + 110 + 101)(0 + 1)(0 + 1)(0 + 1) + 1(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)^*$$

Homework

Exercises 2.5.2 & 3.1.1

