**设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集**
将 $G$ 中元素 $g$ 各个代入,计算 $gH$:
-
$g = e$:
$eH = H$
-
$g = a$:
$aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,$a^2$ 必须是 $G$ 中的元素。 \\
故 $a^2 = e$,则:
$aH = \{ e, a \} = H $
-
$g = b$:
$bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \} $
假设 \( ba = c \),则:
$bH = \{ c, b \} $
-
$g = c$:
$cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \} $
假设 \( ca = b \),则:
$cH = \{ b, c \} $