

Logic in Computer Science

Lecture 03
Predicate Logic

Li Qin

Associate Professor

School of Software Engineering

Predicate Logic (1)

- ★ The need for a richer language
- ★ Predicate logic as a formal language
 - terms —variables, functions
 - formulas —predicates, quantifiers
 - free and bound variables
 - substitution
- ★ Proof theory of predicate logic
 - Natural deduction rules

The Need for a Richer Language

Propositional Logic:

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: not, and, or, if · · · then · · ·
- Limitations: cannot deal with modifiers like there exists, all, among, only.

Example: "Every student is younger than some instructor."

- We could identify the entire phrase with the propositional symbol p.
- However, the phrase has a finer logical structure. It is a statement about the following properties:
 - being a student
 - being an instructor
 - being younger than somebody else

Predicates, Variables and Quantifiers

Properties are expressed by predicates. S, I, Y are *predicates*.

```
S(andy): Andy is a student.
```

I(paul): Paul is an *instructor*.

Y(*andy*, *paul*): Andy is *younger than* Paul.

Variables are placeholders for concrete values.

S(x): x is a student.

I(x): x is an instructor.

Y(x,y): x is younger than y.

Quantifiers make possible encoding the phrase:

"Every student is younger than some instructor."

Two quantifiers: \forall —*forall*, and \exists —*exists*.

Encoding of the above sentence:

$$\forall x(S(x) \rightarrow (\exists y(I(y) \land Y(x,y))))$$

More Examples

"No books are gaseous. Dictionaries are books. Therefore, no dictionary is gaseous."

We denote: B(x): x is a book

G(x): x is gaseous

D(x): x is a dictionary

 $\neg \exists x (B(x) \land G(x)), \forall x (D(x) \rightarrow B(x))$ $\vdash \qquad \qquad \neg \exists x (D(x) \land G(x))$

"Every child is younger than his mother"

We denote: C(x): x is a child

 $\forall x \forall y (C(x) \land M(x,y) \rightarrow Y(x,y))$

M(x,y): x's mother is y

Denote m(x): mother of x

 $\forall x (C(x) \rightarrow Y(x, m(x)))$

Using the function *m* to encode the "mother of" relationship is more appropriate, since every person has a unique mother.

More Examples (2)

"Andy and Paul have the same maternal grandmother"

$$\forall x \forall y \forall u \forall v (M(a,x) \land M(x,y) \land M(p,u) \land M(u,v) \rightarrow y = v)$$

We have introduced a new, special predicate: equality.

Alternative representation:

$$m(m(a)) = m(m(p))$$

Consider the relationship B(x,y): x is the brother of y. This relationship must be encoded as a predicate, since a person may have more than one brother.

Predicate Logic as a Formal Language

Two sorts of "things" in a predicate formula:

- Objects such as *a* (Andy) and *p* (Paul). Function symbols also refer to objects. These are modeled by *terms*.
- Expressions that can be given truth values. These are modeled by *formulas*.

A predicate vocabulary consists of 3 sets:

- Predicate symbols \$\mathbb{P}\$; Each predicate and function symbol comes with a fi xed
 Function symbols \$\mathcal{F}\$; arity (i.e. number of arguments)
- Constants C.

Elements of the formal language of predicate logic:

- Terms
- Formulas
- Free and bound variables
- Substitution

Terms

Definition: *Terms* are defined as follows:

- Any variable is a term;
- Any constant in *C* is a term;
- If t_1, \ldots, t_n are terms and $f \in \mathcal{F}$ has arity n, then $f(t_1, \ldots, t_n)$ is a term;
- Nothing else is a term.

Backus-Naur definition: t := x | c | f(t, ..., t) where x represents variables, c represents constants in C, and f represents function in F with arity n.

Remarks:

- The first building blocks of terms are constants and variables.
- More complex terms are built from function symbols using previously buit terms.
- The notion of terms is independent on the sets C and F.

Formulas

Definition: We define the set of *formulas* over $(\mathcal{F}, \mathcal{P})$ inductively, using the already defined set of terms over \mathcal{F} .

- If P is a predicate with $n \ge 1$ arguments, and t_1, \ldots, t_n are terms over \mathcal{F} , then $P(t_1, \ldots, t_n)$ is a formula.
- If Φ is a formula, then so is $\neg \Phi$.
- If Φ and Ψ are formulas, then so are $\Phi \land \Psi$, $\Phi \lor \Psi$, $\Phi \to \Psi$.
- If Φ is a formula and x is a variable, then $\forall x \Phi$ and $\exists x \Phi$ are formulas.
- Nothing else is a formula.

BNF definition:

$$\Phi ::= P(t_1, \dots t_n) | (\neg \Phi) | (\Phi \land \Phi) | (\Phi \lor \Phi) | (\Phi \to \Phi) | (\forall x \Phi) | (\exists x \Phi)$$

where P is a predicate of arity n, t_i are terms, $i \in \{1, ..., n\}$, x is a variable.

Convention: We retain the usual binding priorities of the connectives \neg , \land , \lor , \rightarrow . We add that $\forall x$ and $\exists x$ bind like \neg .

Consider translating the sentence:

"Every son of my father is my brother"

Two alternatives:

• "Father of" relationship encoded as a predicate.

S(x,y): x is the son of y.

F(x,y): x is the father of y.

B(x, y): x is the brother of y.

m: constant, denoting "myself".

Translation: $\forall x \forall y (F(x,m) \land S(y,x) \rightarrow B(y,m))$

• "Father of" relationship encoded as a function. f(x): forther of x

f(x): father of x.

Translation: $\forall x (S(x, f(m)) \rightarrow B(x, m))$

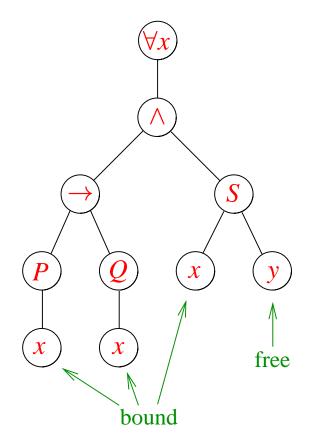
Definition: Let Φ be a formula in predicate logic. An occurrence of x in Φ is *free in* Φ if it is a leaf node in the parse tree of Φ such that there is no path upwards from that node x to a node $\forall x$ or $\exists x$. Otherwise, that occurrence x is called *bound*. For $\forall x \Phi$, we say that Φ —minus any of its sub-formulas $\exists x \Psi$, or $\forall x \Psi$ —is the scope of $\forall x$, respectively $\exists x$.

Formula:

$$\underbrace{\forall x \left((P(x) \to Q(x)) \land S(x, y) \right)}_{\text{Scope of } \forall x}$$

x is bound.

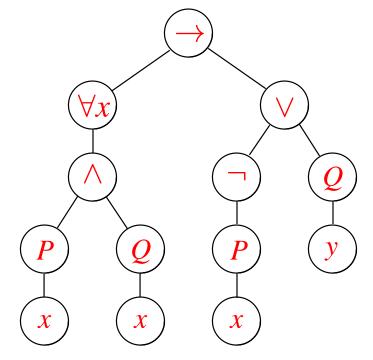
y is free.



Examples of Free and Bound Variables

Formula: $(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

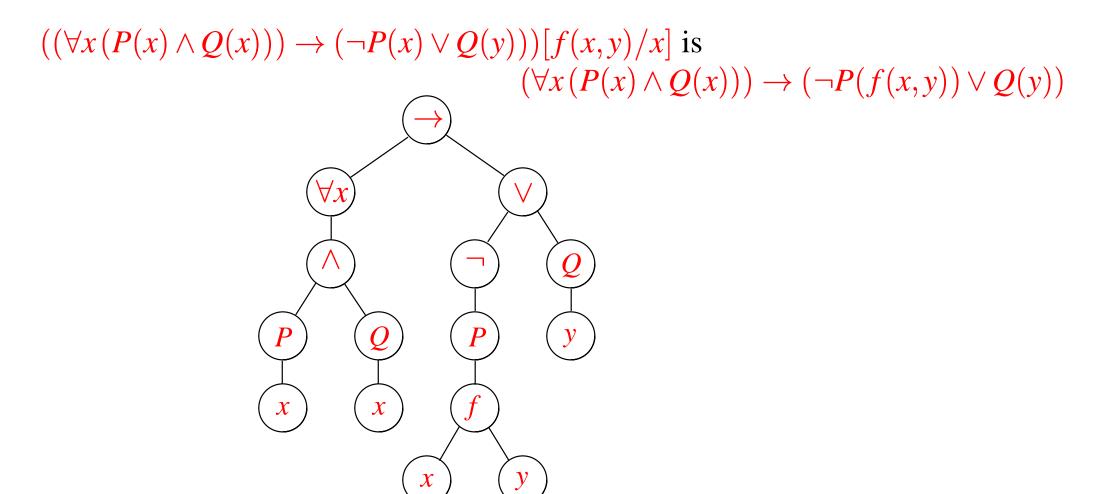
Parse tree:



Substitution

Variables are placeholders, so we must have means of *replacing* them with more concrete information.

Definition: Given a variable x, a term t, and a formula Φ , we define $\Phi[t/x]$ to be the formula obtained by replacing each free occurrence of variable x in Φ with t.



Substitution (2)

Definition: Given a term t, a variable x, and a formula Φ , we say that t is free for x in Φ if no free x leaf in Φ occurs in the scope of $\forall y$ or $\exists y$, for every variable y occurring in t.

Remark: If t is not free for x in Φ , then the substitution $\Phi[t/x]$ has unwanted effects.

Example:

$$(S(x) \land (\forall y (P(x) \rightarrow Q(y))))[y/x] \text{ is } S(y) \land (\forall y (P(y) \rightarrow Q(y)))$$

Avoid this by renaming $\forall y$ into $\forall z$.

$$(S(x) \land (\forall z (P(x) \rightarrow Q(z))))[y/x] \text{ is } S(y) \land (\forall z (P(y) \rightarrow Q(z)))$$

Proof Theory of Predicate Logic

- Natural deduction rules for propositional logic are still valid
- Natural deduction rules for predicate logic:
 - proof rules from propositional logic;
 - proof rules for equality;
 - proof rules for universal quantification;
 - proof rules for existential quantification.
- Quantifier equivalences

Proof Rules for Equality

$$\frac{t_1 = t_2 \quad \Phi[t_1/x]}{\Phi[t_2/x]} = \epsilon$$

Convention: When we write a substitution in the form $\Phi[t/x]$, we implicitly assume that t is free for x in Φ .

Proof example:

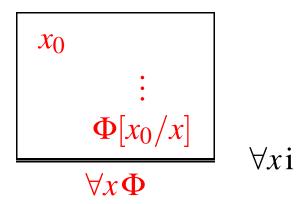
$$x+1=1+x, (x+1>1) \to (x+1>0) \vdash (1+x>1) \to (1+x>0)$$

- 1 x+1=1+x premise
- 2 $(x+1>1) \to (x+1>0)$ premise
- 3 $(1+x>1) \rightarrow (1+x>0)$ =e 1,2

Proof Rules for Universal Quantification

$$\frac{\forall x \Phi}{\Phi[t/x]} \quad \forall x e$$

 $\forall x Q(x)$



Proof examples:

$$\forall x (P(x) \to Q(x)), \forall x P(x) \vdash \forall x Q(x)$$

$$P(t), \forall x (P(x) \to \neg Q(x)) \vdash \neg Q(t)$$

$$V(t) = P(t), \forall x (P(x) \to \neg Q(x)) \vdash \neg Q(t)$$

$$P(t), \forall x (P(x) \to \neg Q(x)) \vdash \neg Q(t)$$

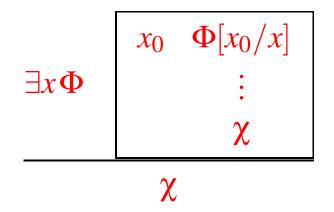
$$P(t), \forall x (P(x) \to \neg Q(x)) \vdash \neg Q(t)$$

$$V(t) = P(t)$$

 $\forall x i 3-5$

6

Proof Rules for Existential Quantification



Side condition: x_0 doesn't occur in χ $\exists \chi e$

Proof examples:

$$\forall x (P(x) \to Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

$$\forall x \Phi \vdash \exists x \Phi$$

$$1 \quad \forall x \Phi \quad \text{premise}$$

$$2 \quad \Phi[x/x] \quad \forall x \in 1$$

$$3 \quad \exists x \Phi \quad \exists x \text{ i } 2$$

1
$$\forall x (P(x) \rightarrow Q(x))$$
 premise
2 $\exists P(x)$ premise
3 x_0 $P(x_0)$ assumption
4 $P(x_0) \rightarrow Q(x_0)$ $\forall x \in 1$
5 $Q(x_0)$ $\rightarrow e = 4,3$
6 $\exists x Q(x)$ $\exists x \in 2,3-6$

Another Example

$$\exists x P(x), \forall x \forall y (P(x) \to Q(y)) \vdash \forall y Q(y)$$

