Compare commits

..

2 Commits

Author SHA1 Message Date
Miyamizu-MitsuhaSang 3c5bc987d9 接口文档更新 2025-10-15 00:31:18 +08:00
Miyamizu-MitsuhaSang 54cc21806f 修复搜索bug 2025-10-15 00:30:57 +08:00
3 changed files with 92 additions and 18 deletions

View File

@ -554,7 +554,60 @@ art. - 冠词
---
### 8. 使用示例
### 8. AI助手模块 (`/ai_assist`)
#### 8.1 词语智能问答
- **接口**: `POST /ai_assist/exp`
- **描述**: 针对指定词语向AI助手提问相关问题获取简洁自然的答案适合初学者。
- **需要认证**: 是
- **请求体**:
```json
{
"word": "string",
"question": "string"
}
```
- **响应**:
```json
{
"word": "string",
"answer": "string",
"model": "string",
"tokens_used": "integer"
}
```
- **状态码**:
- `200`: 问答成功
- `400`: 本月API使用量已超
- `500`: AI调用失败
#### 8.2 清除词语聊天记录
- **接口**: `POST /ai_assist/clear`
- **描述**: 清除指定词语的AI助手聊天记录
- **需要认证**: 是
- **请求参数**:
- `word`: 词语 (string)
- **响应**:
```json
{
"msg": "已清除 <word> 的聊天记录"
}
```
- **状态码**:
- `200`: 清除成功
---
### 9. 使用示例
#### 完整的API调用流程示例
@ -597,6 +650,23 @@ curl -X POST "http://127.0.0.1:8000/translate" \
# 5. 测试Redis连接
curl -X GET "http://127.0.0.1:8000/ping-redis"
# 6. 词语智能问答
curl -X POST "http://127.0.0.1:8000/ai_assist/exp" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <your_token_here>" \
-d '{
"word": "法语",
"question": "什么是法语?"
}'
# 7. 清除词语聊天记录
curl -X POST "http://127.0.0.1:8000/ai_assist/clear" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <your_token_here>" \
-d '{
"word": "法语"
}'
```
---

View File

@ -77,7 +77,8 @@ async def search(request: Request, body: SearchRequest, user=Depends(get_current
# 修改freq
first_word = word_contents[0].word
current_freq = first_word.freq
await first_word.update(freq=current_freq + 1)
first_word.freq = current_freq + 1
await first_word.save()
pos_seen = set()
pos_contents = []
@ -111,7 +112,10 @@ async def search(request: Request, body: SearchRequest, user=Depends(get_current
raise HTTPException(status_code=404, detail="Word not found")
first_def = word_content[0]
pos_list = await first_def.pos.all()
first_word = first_def.word
first_word.freq = first_word.freq + 1
await first_word.save()
pos_list = await first_def.pos
pos_contents = [p.pos_type for p in pos_list]
contents: List[SearchItemJp] = []

View File

@ -11,7 +11,7 @@ from app.utils.textnorm import normalize_text
from settings import TORTOISE_ORM
async def suggest_autocomplete(query: SearchRequest, limit: int = 10) -> List[str]:
async def suggest_autocomplete(query: SearchRequest, limit: int = 10) -> List[Tuple[str, str]]:
"""
:param query: 当前用户输入的内容
@ -60,10 +60,10 @@ async def suggest_autocomplete(query: SearchRequest, limit: int = 10) -> List[st
.get_or_none(
text=query.query
)
.only("text", "freq")
.only("text", "hiragana", "freq")
)
if exact:
exact_word = [(exact.text, exact.freq)]
exact_word = [(exact.text, exact.hiragana, exact.freq)]
else:
exact_word = []
@ -71,34 +71,34 @@ async def suggest_autocomplete(query: SearchRequest, limit: int = 10) -> List[st
WordlistJp
.filter(Q(hiragana__startswith=query_word) | Q(text__startswith=query.query))
.exclude(text=query.query)
.only("text", "freq")
.only("text", "hiragana", "freq")
)
prefix_objs = await qs_prefix[:limit]
prefix: List[Tuple[str, int]] = [(o.text, o.freq) for o in prefix_objs]
prefix: List[Tuple[str, str, int]] = [(o.text, o.hiragana, o.freq) for o in prefix_objs]
need = max(0, limit - len(prefix))
contains: List[Tuple[str, int]] = []
contains: List[Tuple[str, str, int]] = []
if need > 0:
qs_contain = await (
WordlistJp
.filter(Q(hiragana__icontains=query_word) | Q(text__icontains=query.query))
.exclude(Q(hiragana__startswith=query_word) | Q(text__startswith=query.query) | Q(text=query.query))
.only("text", "freq")
.only("text", "freq")
.only("text", "hiragana", "freq")
)
contains_objs = qs_contain[:need * 2]
contains: List[Tuple[str, int]] = [(o.text, o.freq) for o in contains_objs]
contains: List[Tuple[str, str, int]] = [(o.text, o.hiragana, o.freq) for o in contains_objs]
seen_text, out = set(), []
for text, freq in list(exact_word) + list(prefix) + list(contains):
if text not in seen_text:
seen_text.add(text)
out.append((text, freq))
for text, hiragana, freq in list(exact_word) + list(prefix) + list(contains):
key = (text, hiragana)
if key not in seen_text:
seen_text.add(key)
out.append((text, hiragana, freq))
if len(out) >= limit:
break
out = sorted(out, key=lambda w: (w[1], len(w[0]), w[0]))
return [text for text, _ in out]
out = sorted(out, key=lambda w: (-w[2], len(w[0]), w[0]))
return [(text, hiragana) for text, hiragana, _ in out]
async def __test():