209 lines
6.8 KiB
Python
209 lines
6.8 KiB
Python
import asyncio
|
|
import re
|
|
from typing import List, Tuple, Dict, Literal
|
|
|
|
from fastapi import HTTPException
|
|
from tortoise import Tortoise
|
|
from tortoise.expressions import Q
|
|
|
|
from app.api.search_dict.search_schemas import SearchRequest, ProverbSearchResponse, ProverbSearchRequest
|
|
from app.models import WordlistFr, WordlistJp
|
|
from app.models.fr import ProverbFr
|
|
from app.utils.all_kana import all_in_kana
|
|
from app.utils.textnorm import normalize_text
|
|
from settings import TORTOISE_ORM
|
|
|
|
|
|
def contains_chinese(text: str) -> bool:
|
|
"""判断字符串中是否包含至少一个中文字符"""
|
|
return bool(re.search(r'[\u4e00-\u9fff]', text))
|
|
|
|
|
|
async def accurate_proverb(proverb_id: int) -> ProverbSearchResponse:
|
|
proverb = await ProverbFr.get_or_none(id=proverb_id)
|
|
if not proverb:
|
|
raise HTTPException(status_code=404, detail="Proverb not found")
|
|
return ProverbSearchResponse(
|
|
proverb_text=proverb.proverb,
|
|
chi_exp=proverb.chi_exp,
|
|
)
|
|
|
|
|
|
async def suggest_proverb(query: ProverbSearchRequest, lang: Literal['fr', 'zh']) -> List[Dict[str, str]]:
|
|
"""
|
|
对法语谚语表进行搜索建议。
|
|
参数:
|
|
query.query: 搜索关键词
|
|
lang: 'fr' 或 'zh'
|
|
逻辑:
|
|
1. 若 lang='fr',按谚语字段 (proverb) 搜索;
|
|
2. 若 lang='zh',按中文释义字段 (chi_exp) 搜索;
|
|
3. 优先以输入开头的匹配;
|
|
4. 其次为包含输入但不以其开头的匹配(按 freq 排序)。
|
|
:return: [{'id': 1, 'proverb': 'xxx'}, ...]
|
|
"""
|
|
keyword = query.query.strip()
|
|
results: List[Dict[str, str]] = []
|
|
|
|
if not keyword:
|
|
return results
|
|
|
|
# ✅ 根据语言决定搜索字段
|
|
if lang == "zh":
|
|
startswith_field = "chi_exp__istartswith"
|
|
contains_field = "chi_exp__icontains"
|
|
else: # 默认法语
|
|
startswith_field = "proverb__istartswith"
|
|
contains_field = "proverb__icontains"
|
|
|
|
# ✅ 1. 开头匹配
|
|
start_matches = await (
|
|
ProverbFr.filter(**{startswith_field: keyword})
|
|
.order_by("-freq")
|
|
.limit(10)
|
|
.values("id", "proverb", "chi_exp")
|
|
)
|
|
|
|
# ✅ 2. 包含匹配(但不是开头)
|
|
contain_matches = await (
|
|
ProverbFr.filter(
|
|
Q(**{contains_field: keyword}) & ~Q(**{startswith_field: keyword})
|
|
)
|
|
.order_by("-freq")
|
|
.limit(10)
|
|
.values("id", "proverb", "chi_exp")
|
|
)
|
|
|
|
# ✅ 合并结果(去重并保持顺序)
|
|
seen_ids = set()
|
|
for row in start_matches + contain_matches:
|
|
if row["id"] not in seen_ids:
|
|
seen_ids.add(row["id"])
|
|
results.append({
|
|
"id": row["id"],
|
|
"proverb": row["proverb"],
|
|
"chi_exp": row["chi_exp"]
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
async def suggest_autocomplete(query: SearchRequest, limit: int = 10):
|
|
"""
|
|
|
|
:param query: 当前用户输入的内容
|
|
:param limit: 返回列表限制长度
|
|
:return: 联想的单词列表(非完整信息,单纯单词)
|
|
"""
|
|
if query.language == 'fr':
|
|
query_word = normalize_text(query.query)
|
|
exact = await (
|
|
WordlistFr
|
|
.get_or_none(search_text=query.query)
|
|
.values("text", "freq")
|
|
)
|
|
if exact:
|
|
exact_word = [(exact.get("text"), exact.get("freq"))]
|
|
else:
|
|
exact_word = []
|
|
|
|
qs_prefix = (
|
|
WordlistFr
|
|
.filter(Q(search_text__startswith=query_word) | Q(text__startswith=query.query))
|
|
.exclude(search_text=query.query)
|
|
.only("text", "freq")
|
|
)
|
|
prefix_objs = await qs_prefix[:limit]
|
|
prefix: List[Tuple[str, int]] = [(o.text, o.freq) for o in prefix_objs]
|
|
|
|
need = max(0, limit - len(prefix))
|
|
contains: List[Tuple[str, int]] = []
|
|
|
|
if need > 0:
|
|
qs_contain = (
|
|
WordlistFr
|
|
.filter(Q(search_text__icontains=query_word) | Q(text__icontains=query.query))
|
|
.exclude(Q(search_text__startswith=query_word) | Q(text__startswith=query.query) | Q(text=query.query))
|
|
.only("text", "freq")
|
|
.only("text", "freq")
|
|
)
|
|
contains_objs = await qs_contain[: need * 2]
|
|
contains = [(o.text, o.freq) for o in contains_objs]
|
|
|
|
seen_text, out = set(), []
|
|
for text, freq in list(exact_word) + list(prefix) + list(contains):
|
|
key = text
|
|
if key not in seen_text:
|
|
seen_text.add(key)
|
|
out.append((text, freq))
|
|
if len(out) >= limit:
|
|
break
|
|
out = sorted(out, key=lambda w: (-w[2], len(w[0]), w[0]))
|
|
return [text for text, _ in out]
|
|
|
|
else:
|
|
query_word = all_in_kana(query.query)
|
|
exact = await (
|
|
WordlistJp
|
|
.get_or_none(
|
|
text=query.query
|
|
)
|
|
.only("text", "hiragana", "freq")
|
|
)
|
|
if exact:
|
|
exact_word = [(exact.text, exact.hiragana, exact.freq)]
|
|
else:
|
|
exact_word = []
|
|
|
|
qs_prefix = (
|
|
WordlistJp
|
|
.filter(Q(hiragana__startswith=query_word) | Q(text__startswith=query.query))
|
|
.exclude(text=query.query)
|
|
.only("text", "hiragana", "freq")
|
|
)
|
|
prefix_objs = await qs_prefix[:limit]
|
|
prefix: List[Tuple[str, str, int]] = [(o.text, o.hiragana, o.freq) for o in prefix_objs]
|
|
|
|
need = max(0, limit - len(prefix))
|
|
contains: List[Tuple[str, str, int]] = []
|
|
|
|
if need > 0:
|
|
qs_contain = await (
|
|
WordlistJp
|
|
.filter(Q(hiragana__icontains=query_word) | Q(text__icontains=query.query))
|
|
.exclude(Q(hiragana__startswith=query_word) | Q(text__startswith=query.query) | Q(text=query.query))
|
|
.only("text", "hiragana", "freq")
|
|
)
|
|
contains_objs = qs_contain[:need * 2]
|
|
contains: List[Tuple[str, str, int]] = [(o.text, o.hiragana, o.freq) for o in contains_objs]
|
|
|
|
seen_text, out = set(), []
|
|
for text, hiragana, freq in list(exact_word) + list(prefix) + list(contains):
|
|
key = (text, hiragana)
|
|
if key not in seen_text:
|
|
seen_text.add(key)
|
|
out.append((text, hiragana, freq))
|
|
if len(out) >= limit:
|
|
break
|
|
out = sorted(out, key=lambda w: (-w[2], len(w[0]), w[0]))
|
|
return [(text, hiragana) for text, hiragana, _ in out]
|
|
|
|
|
|
async def __test():
|
|
query_word: str = '棋逢'
|
|
return await (
|
|
suggest_proverb(
|
|
query=ProverbSearchRequest(query=query_word),
|
|
lang='zh'
|
|
)
|
|
)
|
|
|
|
|
|
async def __main():
|
|
await Tortoise.init(config=TORTOISE_ORM)
|
|
print(await __test())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
asyncio.run(__main())
|