fix: 修改试卷解析错误
This commit is contained in:
parent
6099a6f86e
commit
209c52a94a
|
|
@ -24,8 +24,9 @@ D. 若 $\mathrm{ord}_m(a) = st$,则 $\mathrm{ord}_m(a^s) = t$.
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
B
|
||||||
B选项不正确。这里应该是条件是充分非必要的,而不是充要条件。
|
|
||||||
|
$a^d \equiv a^k \pmod{m}$ 成立的充要条件是 $d \equiv k \pmod{(\mathrm{ord}_m(a))}$
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **2. 下列哪个数不是模 11 的原根?**
|
> **2. 下列哪个数不是模 11 的原根?**
|
||||||
|
|
@ -37,10 +38,9 @@ D. 2
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
C
|
||||||
答案:C
|
|
||||||
|
简单验证即可
|
||||||
C选项4不是模11的原根。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **3. 9 模 14 的指数 $\mathrm{ord}_{14}(9)$ 是**
|
> **3. 9 模 14 的指数 $\mathrm{ord}_{14}(9)$ 是**
|
||||||
|
|
@ -52,10 +52,9 @@ D. 1
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
B
|
||||||
答案:B
|
|
||||||
|
简单计算即可
|
||||||
9模14的指数为3。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **4. 设 $a, b, c \in \mathbb{Z}, c \ne 0$,下列结论不正确的是**
|
> **4. 设 $a, b, c \in \mathbb{Z}, c \ne 0$,下列结论不正确的是**
|
||||||
|
|
@ -67,10 +66,9 @@ D. 若 $c \mid (a^2 - b^2)$,则 $c \mid (a - b)$ 或 $c \mid (a + b)$.
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
D
|
||||||
答案:D
|
|
||||||
|
例如 $a - b = 3, a + b = 5, c = 15$
|
||||||
D选项不正确。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **5. 模 40 的简化剩余系中元素的个数为**
|
> **5. 模 40 的简化剩余系中元素的个数为**
|
||||||
|
|
@ -82,10 +80,9 @@ D. 40
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
A
|
||||||
|
|
||||||
答案:A
|
$\varphi(40) = 16$
|
||||||
|
|
||||||
$\varphi(40) = 16$。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **6. 已知 $\mathrm{ord}_{137}(47) = 136$, $\mathrm{ord}_{739}(47) = 82$,则 $\mathrm{ord}_{101243}(47) =$**
|
> **6. 已知 $\mathrm{ord}_{137}(47) = 136$, $\mathrm{ord}_{739}(47) = 82$,则 $\mathrm{ord}_{101243}(47) =$**
|
||||||
|
|
@ -97,10 +94,8 @@ D. 11152
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
C
|
||||||
答案:C
|
因为 $(137, 739) = 1, 137*739 = 101243$, 故 $\mathrm{ord}_{101243}(47) = [\mathrm{ord}_{137}(47), \mathrm{ord}_{739}(47)] = [136, 82] = 5576$
|
||||||
|
|
||||||
答案为5576。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **7. 设 $n$ 为整数,则下列选项中一定可以被 6 整除的是**
|
> **7. 设 $n$ 为整数,则下列选项中一定可以被 6 整除的是**
|
||||||
|
|
@ -112,10 +107,9 @@ D. $n(n - 1)$
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
B
|
||||||
|
|
||||||
答案:B
|
$n(n^2 - 1) = n(n-1)(n+1)$,因子中必然存在2与3,故能被6整除
|
||||||
|
|
||||||
$n(n^2 - 1) = n(n-1)(n+1)$ 一定可以被6整除。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **8. 下列选项中正确的是**
|
> **8. 下列选项中正确的是**
|
||||||
|
|
@ -127,10 +121,9 @@ D. 给定整数 $m > 1$,$(a,m) = (b,m) = 1$,则 $\mathrm{ord}_m(a \cdot b) =
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
C
|
||||||
|
|
||||||
答案:C
|
简单验证即可
|
||||||
|
|
||||||
C选项正确,2047是对于基2的拟素数。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **9. 模 24 的一个简化剩余系为**
|
> **9. 模 24 的一个简化剩余系为**
|
||||||
|
|
@ -142,10 +135,9 @@ D. $\{3, 7, 11, 13, 17, 19, 23\}$
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
C
|
||||||
|
|
||||||
答案:C
|
由定义验证即可
|
||||||
|
|
||||||
C选项是模24的一个简化剩余系。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **10. 以下哪个数不是模 71 的二次剩余?**
|
> **10. 以下哪个数不是模 71 的二次剩余?**
|
||||||
|
|
@ -157,10 +149,9 @@ D. 38
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
A
|
||||||
|
|
||||||
答案:A
|
计算勒让德符号即可
|
||||||
|
|
||||||
A选项35不是模71的二次剩余。
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
@ -171,40 +162,36 @@ A选项35不是模71的二次剩余。
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
2
|
||||||
|
|
||||||
答案:2
|
$13^2 = 169 \equiv 1 \pmod{21}$,故 $\mathrm{ord}_{21}(13) = 2$
|
||||||
|
|
||||||
$\mathrm{ord}_{21}(13) = 2$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **2. $3^{865749} \mod 11 =$ ________.**
|
> **2. $3^{865749} \mod 11 =$ ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
4
|
||||||
|
|
||||||
答案:4
|
因为 $(3, 11) = 1$,故 $3^{10} \equiv 1 \pmod{11}$,则 $3^{865749} \equiv 3^9 \equiv 4 \pmod{11}$
|
||||||
|
|
||||||
$3^{865749} \equiv 4 \pmod{11}$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **3. 同余方程 $17x \equiv 14 \pmod{21}$ 的解为 ________.**
|
> **3. 同余方程 $17x \equiv 14 \pmod{21}$ 的解为 ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
$x \equiv 7 \pmod{21}$
|
||||||
|
|
||||||
答案:$x \equiv 7 \pmod{11}$
|
先计算17在模21下的逆元,简单计算得到 $17 * 5 \equiv 1 \pmod{21}$,再变形原方程为 $5 * 17x \equiv 5 * 14 \pmod{21}$,即 $x \equiv 70 \equiv 7 \pmod{21}$
|
||||||
|
|
||||||
同余方程的解为 $x \equiv 7 \pmod{11}$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **4. 已知 $a = 123, b = 321$,则有 $s =$ ________, $t =$ ________,使得 $sa + tb = (a, b) =$ ________.**
|
> **4. 已知 $a = 123, b = 321$,则有 $s =$ ________, $t =$ ________,使得 $sa + tb = (a, b) =$ ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
|
||||||
答案:$s = 47, t = -18, (a,b) = 3$
|
|
||||||
|
|
||||||
$s = 47, t = -18, (a,b) = 3$
|
$s = 47, t = -18, (a,b) = 3$
|
||||||
|
|
||||||
|
进行exgcd即可,算法参见教材第一章
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **5. 下面的方程组的解为 ________.**
|
> **5. 下面的方程组的解为 ________.**
|
||||||
|
|
@ -216,60 +203,54 @@ x - y \equiv 10 \pmod{47}
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
$x \equiv 11 \pmod{47}, y \equiv 1 \pmod{47}$
|
||||||
|
|
||||||
答案:$x \equiv 11 \pmod{47}, y \equiv 1 \pmod{47}$
|
变形后解一元一次同余方程即可
|
||||||
|
|
||||||
方程组的解为 $x \equiv 11 \pmod{47}, y \equiv 1 \pmod{47}$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **6. $\left( \frac{65}{103} \right) =$ ________.**
|
> **6. $\left( \frac{65}{103} \right) =$ ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
-1
|
||||||
|
|
||||||
答案:-1
|
简单计算勒让德符号
|
||||||
|
|
||||||
勒让德符号 $\left( \frac{65}{103} \right) = -1$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **7. 同余方程 $6x \equiv 3 \pmod{9}$ 的解为 ________.**
|
> **7. 同余方程 $6x \equiv 3 \pmod{9}$ 的解为 ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
$x \equiv 2, 5, 8 \pmod{9}$
|
||||||
|
|
||||||
答案:$x \equiv 2, 5, 8 \pmod{9}$
|
做法同3,注意多解
|
||||||
|
|
||||||
同余方程的解为 $x \equiv 2, 5, 8 \pmod{9}$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **8. 模 29 的最小正原根为 ________.**
|
> **8. 模 29 的最小正原根为 ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
2
|
||||||
|
|
||||||
答案:2
|
简单检验计算即可
|
||||||
|
|
||||||
模29的最小正原根为2
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **9. $2^{2002}$ 被 7 除所得的余数为 ________.**
|
> **9. $2^{2002}$ 被 7 除所得的余数为 ________.**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
2
|
||||||
|
|
||||||
答案:2
|
做法同2
|
||||||
|
|
||||||
$2^{2002} \equiv 2 \pmod{7}$
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
> **10. 已知 443 是素数,同余方程 $x^2 \equiv 26 \pmod{443}$ 有 ________ 个解。**
|
> **10. 已知 443 是素数,同余方程 $x^2 \equiv 26 \pmod{443}$ 有 ________ 个解。**
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>解:</summary>
|
<summary>解:</summary>
|
||||||
|
0
|
||||||
|
|
||||||
答案:0
|
计算勒让德符号 $\left( \frac{26}{443} \right)$即可
|
||||||
|
|
||||||
该同余方程有0个解
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue