Updated some README.md
This commit is contained in:
parent
c226ca85fa
commit
ad1e514283
|
|
@ -1,5 +1,5 @@
|
|||
# ECNU_Crypt_Student_Manual
|
||||
# 华东师范大学密码与网络安全系学生自救手册
|
||||
# ECNU_Crypt_Student_Manual (华东师范大学密码与网络安全系学生自救手册)
|
||||
|
||||
本仓库致力于打破密码方向的信息差,给同学们提供课程信息和复习资料
|
||||
2024.7.4更新:上传了数论、自动机、计算机安全的资料
|
||||
2025.1.19更新:上传了抽象代数、计算机逻辑、无线网络安全、密码分析学的资料
|
||||
|
|
@ -7,4 +7,4 @@
|
|||
TODO:做几份期末答案,收集课程评价和教师评价
|
||||
可能的TODO:对于每个课程写一个简要的学习路径和重点
|
||||
|
||||
### 如有问题或意见,抑或是课程上遇到问题,欢迎直接提issue或者邮箱联系本人(mailto:zy1834576129@outlook.com),希望大家都能有一个健康而快乐的大学生活!
|
||||
**如有问题或意见,抑或是课程上遇到问题,欢迎直接提issue或者邮箱联系本人(mailto:zy1834576129@outlook.com),希望大家都能有一个健康而快乐的大学生活!**
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
## 关于课程给分的评价
|
||||
# 关于课程给分的评价
|
||||
|
||||
1.上课比较轻松,没有作业,不过有三个lab,lab的难度本身不大,但是流程长,工作量大,而且手册版本过旧,会出现很多问题,体验较差
|
||||
2.没有期末考试,有一项个人作业和一项小组作业:个人作业是写paper summary,英文写作,没有字数要求;小组作业有两个选择:写综述或者复现论文,综述的分数会乘0.9的系数,老师会提供一个paper list,可以在里面找素材
|
||||
|
|
|
|||
|
|
@ -1,31 +1,67 @@
|
|||
**设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集**
|
||||
  将 $G$ 中元素 $g$ 各个代入,计算 $gH$:
|
||||
# 答案
|
||||
|
||||
<ol>
|
||||
<li>
|
||||
$g = e$:
|
||||
$eH = H$
|
||||
</li>
|
||||
##
|
||||
|
||||
<li>
|
||||
$g = a$:
|
||||
$aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,$a^2$ 必须是 $G$ 中的元素。 \\
|
||||
故 $a^2 = e$,则:
|
||||
$aH = \{ e, a \} = H $
|
||||
</li>
|
||||
### 1.设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集
|
||||
|
||||
<li>
|
||||
$g = b$:
|
||||
$bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \} $
|
||||
假设 \( ba = c \),则:
|
||||
$bH = \{ c, b \} $
|
||||
</li>
|
||||
解:
|
||||
将 $G$ 中元素 $g$ 各个代入,计算 $gH$
|
||||
|
||||
<li>
|
||||
$g = c$:
|
||||
$cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \} $
|
||||
假设 \( ca = b \),则:
|
||||
$cH = \{ b, c \} $
|
||||
</li>
|
||||
- $g = e$:
|
||||
$eH = H$
|
||||
|
||||
</ol>
|
||||
- $g = a$:
|
||||
$aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,所以 $a^2$ 必须是 $G$ 中元素。
|
||||
故 $a^2 = e$,则: $aH = \{ e, a \} = H$
|
||||
|
||||
- $g = b$:
|
||||
$bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \}$,
|
||||
假设 $ba = c$ ,则:
|
||||
$bH = \{ c, b \}$
|
||||
|
||||
- $g = c$:
|
||||
$cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \}$,
|
||||
假设 $ca = b$ ,则:
|
||||
$cH = \{ b, c \} = bH$
|
||||
|
||||
综上所述,H的所有子陪集是 $\{ e, a \}, \{ b, c \}$
|
||||
|
||||
**2.写出 $R=Z/6Z$ 的所有零因子**
|
||||
|
||||
解:
|
||||
$R=Z/6Z \cong Z_6$,我们只要考虑 $Z_6$ 上的性质:
|
||||
显然有 $2*3 \equiv 0 \pmod{6}, 4*3 \equiv 0 \pmod{6}$,所以零因子是2,3,4
|
||||
|
||||
**3.定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$**
|
||||
|
||||
解:
|
||||
直接计算即可,我们这里直接给出答案:$P+Q = (8, 15)$ , $2P = (14, 15)$
|
||||
|
||||
**4.求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元**
|
||||
|
||||
解:
|
||||
这时候有同学要问了,生成元怎么找啊?其实很简单,直接验证就可以了,(出于强大的直觉和观察力)我们在这里直接验证 $x$ :
|
||||
|
||||
| $x^n$ | $x^n\pmod{x^4+x^3+1}$ |
|
||||
|------|----------|
|
||||
| $x^0$ | $1$ |
|
||||
| $x^1$ | $x$ |
|
||||
| $x^2$ | $x^2$ |
|
||||
| $x^3$ | $x^3$ |
|
||||
| $x^4$ | $x^3 + 1$ |
|
||||
| $x^5$ | $x^3 + x + 1$ |
|
||||
| $x^6$ | $x^3 + x^2 + x + 1$ |
|
||||
| $x^7$ | $1 + x^2 + x$ |
|
||||
| $x^8$ | $x^2 + x + 1$ |
|
||||
| $x^9$ | $x^3 + x^2 + x$ |
|
||||
| $x^{10}$ | $x^3 + x^2 + x + 1$ |
|
||||
| $x^{11}$ | $x^3 + x + 1$ |
|
||||
| $x^{12}$ | $x^3 + 1$ |
|
||||
| $x^{13}$ | $x^3$ |
|
||||
| $x^{14}$ | $x^2$ |
|
||||
|
||||
如上表,由 $x$ 生成的15个非零元素互不相等,所以 $x$ 确实是生成元,非零元的表示如表中所示
|
||||
|
||||
### 5.证明:有限环的特征一定不为0
|
||||
|
||||
证明:请参考课件Chap7.pdf中27-28页
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
## 课程评价
|
||||
# 课程评价
|
||||
|
||||
若人少 ~少到不适合使用百分制~ , 会变成五级制,建议无脑选
|
||||
|
||||
|
|
|
|||
|
|
@ -1,16 +1,18 @@
|
|||
# 一、问答题
|
||||
# 试卷
|
||||
|
||||
## 一、问答题
|
||||
|
||||
1.有限状态自动机有哪些分类?它们之间有什么联系与区别?
|
||||
2.FSA(有限状态自动机)、DPDA、NPDA的表达能力有什么区别?
|
||||
3.下推自动机的两种接收方式是什么?它们是否等价?
|
||||
4.图灵机停机问题和判定性问题是什么?请简述
|
||||
|
||||
## 二、构造题
|
||||
|
||||
|
||||
# 二、构造题
|
||||
1.考虑下述正则表达式 $(a+b)^\*ab^\*$,请将其先转化为 $\epsilon-NFA$,再转化为DFA,并将得到的DFA做最小化
|
||||
1.考虑下述正则表达式 $(a+b)^*ab^*$,请将其先转化为 $\epsilon-NFA$,再转化为DFA,并将得到的DFA做最小化
|
||||
2.构造一个图灵机,使得它接受a与b的个数相同,而且a的数量与b的数量均为3的倍数的串(提示:可以采用带状态的图灵机拓展),并给出abbaba的接受过程
|
||||
3.(这一题考的是:给定一个PDA,构造出对应的CFL,并将该CFL转化为乔姆斯基范式。原题的转移函数没复现出来,大家可以参照课件中例题,难度差不多)
|
||||
4.证明: $L=\\{a^ib^jc^k|k=min(i,j)\\}$不是上下文无关语言
|
||||
5.考虑下述语法G: $S\rightarrow SS|aSa|bSb|aa|bb$
|
||||
(1)证明该语法有二义性
|
||||
(2)证明该语法产生的语言有固有二义性
|
||||
4.证明: $L = \{a^ib^jc^k|k=min(i,j) \}$ 不是上下文无关语言
|
||||
5.考虑下述语法 $G$ : $S\rightarrow SS|aSa|bSb|aa|bb$
|
||||
(1). 证明该语法有二义性
|
||||
(2). 证明该语法产生的语言有固有二义性
|
||||
|
|
|
|||
|
|
@ -1,36 +1,40 @@
|
|||
# 试卷
|
||||
|
||||
# 简答题
|
||||
<ol>
|
||||
<li>What is the definition of validity for a propositional logic formula?</li>
|
||||
<li>Please explain how to determine whether a given propositional logic formula with CNF is valid.</li>
|
||||
<li>Please illustrate the different treatment for free and bound variables in the semantical evaluation of a predicate logic formula.</li>
|
||||
<li>Please state the key idea of program verification using model checking techniques.</li>
|
||||
</ol>
|
||||
## 简答题
|
||||
|
||||
# 计算题
|
||||
<ol>
|
||||
<li> Convert the following formula into CNF and give its parse tree: $(p \vee q \rightarrow r ) \rightarrow r \vee s$ </li>
|
||||
<li> Translate the following statements into predicate logic formula: </li>
|
||||
<li> model checking</li>
|
||||
</ol>
|
||||
1. What is the definition of validity for a propositional logic formula?
|
||||
|
||||
# 证明题
|
||||
<ol>
|
||||
<li> Prove the following statement: $(p \wedge q) \rightarrow r \vdash (p \rightarrow r) \vee (q \rightarrow r)$</li>
|
||||
<li> Prove the following sequent doesn't hold using semantical evaluation:
|
||||
$\forall x \exists y P(x,y) \models \exists y \forall x P(x,y)$</li>
|
||||
<li> Prove the total correctness of the following hoare triplet: $\{ x \geq 0 \wedge y > 0 \} Div \{ y=d*x+r \wedge r < y \}$</li>
|
||||
2. Please explain how to determine whether a given propositional logic formula with CNF is valid.
|
||||
|
||||
```cpp
|
||||
Div:
|
||||
{pre-condition}
|
||||
r = y;
|
||||
d = 0;
|
||||
while(r >= y){
|
||||
r = r - y;
|
||||
d = d + 1;
|
||||
}
|
||||
{post-condition}
|
||||
3. Please illustrate the different treatment for free and bound variables in the semantical evaluation of a predicate logic formula.
|
||||
|
||||
4. Please state the key idea of program verification using model checking techniques.
|
||||
|
||||
## 计算题
|
||||
|
||||
1. Convert the following formula into CNF and draw its parse tree: $(p \vee q \rightarrow r ) \rightarrow r \vee s$
|
||||
|
||||
2. Translate the following statements into predicate logic formula:
|
||||
|
||||
3. model checking
|
||||
|
||||
## 证明题
|
||||
|
||||
1. Prove the following statement: $(p \wedge q) \rightarrow r \vdash (p \rightarrow r) \vee (q \rightarrow r)$
|
||||
|
||||
2. Prove the following sequent doesn't hold using semantical evaluation:
|
||||
$\forall x \exists y P(x,y) \models \exists y \forall x P(x,y)$
|
||||
|
||||
3. Prove the total correctness of the following hoare triplet: $\{ x \geq 0 \wedge y > 0 \} Div \{ y=d*x+r \wedge r < y \}$
|
||||
|
||||
```cpp
|
||||
Div:
|
||||
{pre-condition}
|
||||
r = y;
|
||||
d = 0;
|
||||
while (r >= y) {
|
||||
r = r - y;
|
||||
d = d + 1;
|
||||
}
|
||||
{post-condition}
|
||||
```
|
||||
</ol>
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue