Update 手做答案.md

This commit is contained in:
タクヤマ 2024-07-06 23:56:19 +08:00 committed by GitHub
parent fdfbf791b4
commit d1bcc8773d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 22 additions and 1 deletions

View File

@ -15,4 +15,25 @@
9. 2
10. 0
# 三、计算题
# 三、计算题
1. $\because\varphi(41)=40,\ (\varphi(41),15)=5$
$\therefore\ $方程有5个解
\
$x^{15}\equiv14\ (mod\ 41)$
查表得 $14\equiv6^{25}\ (mod\ 41)$
令 $x\equiv\ 6^a\ (mod\ 41)$
则有 $6^{a^{15}}\equiv6^{25}\ (mod\ 41)$
即 $6^{15a}\equiv6^{25}\ (mod\ 41)$
则 $15a\equiv25\ (mod\ 40)$
化为 $3a\equiv5\ (mod\ 8)$,该式解为 $a\equiv7\ (mod\ 8)$
故解为 $a\equiv7,15,23,31,39\ (mod\ 40)$
查表得原式解为 $x\equiv29,3,30,13,7\ (mod\ 41)$
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1-1
# 四、证明题
1. 要证121是基3的拟素数即证 $3^{120}\equiv1\ (mod\ 121)$
一种常见的思路:
显然121与3互素由欧拉定理 $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
另一种可能性:
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证