1.3 KiB
1.3 KiB
注:扫描件中模糊处均不影响做题
一、选择题
BCBBA CBCCA
二、填空题
- 2
- 4
x\equiv7\ (mod\ 11)s=47,t=-18,(a,b)=33x\equiv11\ (mod\ 47), y\equiv1\ (mod\ 47)- -1
x\equiv2,5,8\ (mod\ 9)- 2
- 2
- 0
三、计算题
\because\varphi(41)=40,\ (\varphi(41),15)=5
\therefore\方程有5个解
x^{15}\equiv14\ (mod\ 41)
查表得14\equiv6^{25}\ (mod\ 41)
令x\equiv\ 6^a\ (mod\ 41)
则有6^{a^{15}}\equiv6^{25}\ (mod\ 41)
即6^{15a}\equiv6^{25}\ (mod\ 41)
则15a\equiv25\ (mod\ 40)
化为3a\equiv5\ (mod\ 8),该式解为a\equiv7\ (mod\ 8)
故解为a\equiv7,15,23,31,39\ (mod\ 40)
查表得原式解为x\equiv29,3,30,13,7\ (mod\ 41)- 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1,-1
四、证明题
- 要证121是基3的拟素数,即证
3^{120}\equiv1\ (mod\ 121)
一种常见的思路:
显然121与3互素,由欧拉定理,\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)
所以3^{120}\equiv3^{10}\ (mod\ 121),3^{10}显然可以手动验算,得证
另一种可能性: 尝试逐个检验后发现3^{5}=243\equiv1\ (mod\ 121),5|120,直接得证