Update 手做答案.md
This commit is contained in:
parent
fdfbf791b4
commit
d1bcc8773d
|
|
@ -15,4 +15,25 @@
|
||||||
9. 2
|
9. 2
|
||||||
10. 0
|
10. 0
|
||||||
|
|
||||||
# 三、计算题
|
# 三、计算题
|
||||||
|
1. $\because\varphi(41)=40,\ (\varphi(41),15)=5$
|
||||||
|
$\therefore\ $方程有5个解
|
||||||
|
\
|
||||||
|
$x^{15}\equiv14\ (mod\ 41)$
|
||||||
|
查表得 $14\equiv6^{25}\ (mod\ 41)$
|
||||||
|
令 $x\equiv\ 6^a\ (mod\ 41)$
|
||||||
|
则有 $6^{a^{15}}\equiv6^{25}\ (mod\ 41)$
|
||||||
|
即 $6^{15a}\equiv6^{25}\ (mod\ 41)$
|
||||||
|
则 $15a\equiv25\ (mod\ 40)$
|
||||||
|
化为 $3a\equiv5\ (mod\ 8)$,该式解为 $a\equiv7\ (mod\ 8)$
|
||||||
|
故解为 $a\equiv7,15,23,31,39\ (mod\ 40)$
|
||||||
|
查表得原式解为 $x\equiv29,3,30,13,7\ (mod\ 41)$
|
||||||
|
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1,-1
|
||||||
|
|
||||||
|
# 四、证明题
|
||||||
|
1. 要证121是基3的拟素数,即证 $3^{120}\equiv1\ (mod\ 121)$
|
||||||
|
一种常见的思路:
|
||||||
|
显然121与3互素,由欧拉定理, $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
|
||||||
|
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
|
||||||
|
另一种可能性:
|
||||||
|
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue