完成了答案的编写

This commit is contained in:
タクヤマ 2024-07-07 23:48:30 +08:00 committed by GitHub
parent d1bcc8773d
commit d9ef9f5c17
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 16 additions and 1 deletions

View File

@ -31,9 +31,24 @@
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1-1
# 四、证明题
1. 要证121是基3的拟素数即证 $3^{120}\equiv1\ (mod\ 121)$
1.要证121是基3的拟素数即证 $3^{120}\equiv1\ (mod\ 121)$
一种常见的思路:
显然121与3互素由欧拉定理 $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
另一种可能性:
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
2. 显然p不为2
$\because p|n^4+1$
$\therefore n^4+1\equiv 0\ (mod \ p)$
$\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)$
$\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)$
由二次剩余的定义知式子右边是模p的二次剩余
$\therefore(\frac{2n^2}{p})=1$
又 $\because (n,p)=1$
$\therefore(\frac{2}{p})=1$
$\therefore p\equiv 1,-1\ (mod\ 8)$
类似的,有 $n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1$
分别检验 $p\equiv 1\ (mod\ 8)$ 与 $p\equiv -1\ (mod\ 8)$,发现只有 $p\equiv 1\ (mod\ 8)$满足条件,得证