完成了答案的编写
This commit is contained in:
parent
d1bcc8773d
commit
d9ef9f5c17
|
|
@ -31,9 +31,24 @@
|
|||
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1,-1
|
||||
|
||||
# 四、证明题
|
||||
|
||||
1.要证121是基3的拟素数,即证 $3^{120}\equiv1\ (mod\ 121)$
|
||||
一种常见的思路:
|
||||
显然121与3互素,由欧拉定理, $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
|
||||
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
|
||||
另一种可能性:
|
||||
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
|
||||
2. 显然p不为2
|
||||
$\because p|n^4+1$
|
||||
$\therefore n^4+1\equiv 0\ (mod \ p)$
|
||||
$\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)$
|
||||
$\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)$
|
||||
由二次剩余的定义,知式子右边是模p的二次剩余
|
||||
$\therefore(\frac{2n^2}{p})=1$
|
||||
又 $\because (n,p)=1$
|
||||
$\therefore(\frac{2}{p})=1$
|
||||
$\therefore p\equiv 1,-1\ (mod\ 8)$
|
||||
|
||||
类似的,有 $n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1$
|
||||
分别检验 $p\equiv 1\ (mod\ 8)$ 与 $p\equiv -1\ (mod\ 8)$,发现只有 $p\equiv 1\ (mod\ 8)$满足条件,得证
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue