feat: make 信安数学基础2 paper
This commit is contained in:
parent
195353b448
commit
ef97e28852
|
|
@ -0,0 +1,123 @@
|
||||||
|
---
|
||||||
|
title: 2024Fall_期末
|
||||||
|
category:
|
||||||
|
- 软件工程学院
|
||||||
|
- 课程资料
|
||||||
|
tag:
|
||||||
|
- 试卷
|
||||||
|
author:
|
||||||
|
- タクヤマ
|
||||||
|
---
|
||||||
|
|
||||||
|
## 说明
|
||||||
|
|
||||||
|
本学期(2024年秋季学期)的期末试卷难度**相当**低,本人评价为有手就行,故没有特意记忆所有题目,而是挑出一些有代表性的题目以供参考
|
||||||
|
|
||||||
|
我们这里再提供一道填空题,一道选择题,以显示这张卷子的**诚意**
|
||||||
|
<ol>
|
||||||
|
<li>
|
||||||
|
|
||||||
|
设 $G$ 是一个群,对于 $\forall a,b \in G$, $a*b=b*a$, 则 $G$ 是 ____ 群
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
|
||||||
|
设 $R$ 是一个环,对于 $\forall a,b \in R$, $a+b=b+a$, 则 $R$ 是?
|
||||||
|
A. 整环 B. 交换环 C. 含幺环 D. 环
|
||||||
|
</li>
|
||||||
|
</ol>
|
||||||
|
|
||||||
|
很大程度上,老师的出题和给分是十分宽容的,请大家好好学习这门课程,**数学并不是妖魔鬼怪!**
|
||||||
|
|
||||||
|
## 题目
|
||||||
|
|
||||||
|
> **1. 设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集**
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>解:</summary>
|
||||||
|
|
||||||
|
将 $G$ 中元素 $g$ 各个代入,计算 $gH$
|
||||||
|
|
||||||
|
- $g = e$:
|
||||||
|
$eH = H$
|
||||||
|
|
||||||
|
- $g = a$:
|
||||||
|
$aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,所以 $a^2$ 必须是 $G$ 中元素。
|
||||||
|
故 $a^2 = e$,则: $aH = \{ e, a \} = H$
|
||||||
|
|
||||||
|
- $g = b$:
|
||||||
|
$bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \}$,
|
||||||
|
假设 $ba = c$ ,则:
|
||||||
|
$bH = \{ c, b \}$
|
||||||
|
|
||||||
|
- $g = c$:
|
||||||
|
$cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \}$,
|
||||||
|
假设 $ca = b$ ,则:
|
||||||
|
$cH = \{ b, c \} = bH$
|
||||||
|
|
||||||
|
综上所述,H的所有子陪集是 $\{ e, a \}, \{ b, c \}$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
> **2. 写出 $R=Z/6Z$ 的所有零因子**
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>解:</summary>
|
||||||
|
|
||||||
|
$R=Z/6Z \cong Z_6$,我们只要考虑 $Z_6$ 上的性质:
|
||||||
|
显然有 $2\*3 \equiv 0 \pmod{6}, 4*3 \equiv 0 \pmod{6}$,所以零因子是2,3,4
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
> **3. 定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$**
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>解:</summary>
|
||||||
|
|
||||||
|
直接计算即可,我们这里直接给出答案: $P+Q = (8, 15)$ , $2P = (14, 15)$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
> **4. 求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元**
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>解:</summary>
|
||||||
|
|
||||||
|
这时候有同学要问了,生成元怎么找啊?其实很简单,直接验证就可以了,(出于强大的直觉和观察力)我们在这里直接验证 $x$ :
|
||||||
|
|
||||||
|
| $x^n$ | $x^n\pmod{x^4+x^3+1}$ |
|
||||||
|
| -------- | --------------------- |
|
||||||
|
| $x^0$ | $1$ |
|
||||||
|
| $x^1$ | $x$ |
|
||||||
|
| $x^2$ | $x^2$ |
|
||||||
|
| $x^3$ | $x^3$ |
|
||||||
|
| $x^4$ | $x^3 + 1$ |
|
||||||
|
| $x^5$ | $x^3 + x + 1$ |
|
||||||
|
| $x^6$ | $x^3 + x^2 + x + 1$ |
|
||||||
|
| $x^7$ | $1 + x^2 + x$ |
|
||||||
|
| $x^8$ | $x^2 + x + 1$ |
|
||||||
|
| $x^9$ | $x^3 + x^2 + x$ |
|
||||||
|
| $x^{10}$ | $x^3 + x^2 + x + 1$ |
|
||||||
|
| $x^{11}$ | $x^3 + x + 1$ |
|
||||||
|
| $x^{12}$ | $x^3 + 1$ |
|
||||||
|
| $x^{13}$ | $x^3$ |
|
||||||
|
| $x^{14}$ | $x^2$ |
|
||||||
|
|
||||||
|
如上表,由 $x$ 生成的15个非零元素互不相等,所以 $x$ 确实是生成元,非零元的表示如表中所示
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
> **5. 证明:有限环的特征一定不为0**
|
||||||
|
|
||||||
|
证明:请参考课件Chap7.pdf中27-28页
|
||||||
|
|
@ -1,67 +0,0 @@
|
||||||
# 答案
|
|
||||||
|
|
||||||
##
|
|
||||||
|
|
||||||
### 1.设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集
|
|
||||||
|
|
||||||
解:
|
|
||||||
将 $G$ 中元素 $g$ 各个代入,计算 $gH$
|
|
||||||
|
|
||||||
- $g = e$:
|
|
||||||
$eH = H$
|
|
||||||
|
|
||||||
- $g = a$:
|
|
||||||
$aH = \{ a \cdot a, a \cdot e \} = \{ a^2, a \}$,由于 $G$ 是群,且 $H$ 是子群,所以 $a^2$ 必须是 $G$ 中元素。
|
|
||||||
故 $a^2 = e$,则: $aH = \{ e, a \} = H$
|
|
||||||
|
|
||||||
- $g = b$:
|
|
||||||
$bH = \{ b \cdot a, b \cdot e \} = \{ ba, b \}$,
|
|
||||||
假设 $ba = c$ ,则:
|
|
||||||
$bH = \{ c, b \}$
|
|
||||||
|
|
||||||
- $g = c$:
|
|
||||||
$cH = \{ c \cdot a, c \cdot e \} = \{ ca, c \}$,
|
|
||||||
假设 $ca = b$ ,则:
|
|
||||||
$cH = \{ b, c \} = bH$
|
|
||||||
|
|
||||||
综上所述,H的所有子陪集是 $\{ e, a \}, \{ b, c \}$
|
|
||||||
|
|
||||||
**2.写出 $R=Z/6Z$ 的所有零因子**
|
|
||||||
|
|
||||||
解:
|
|
||||||
$R=Z/6Z \cong Z_6$,我们只要考虑 $Z_6$ 上的性质:
|
|
||||||
显然有 $2\*3 \equiv 0 \pmod{6}, 4*3 \equiv 0 \pmod{6}$,所以零因子是2,3,4
|
|
||||||
|
|
||||||
**3.定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$**
|
|
||||||
|
|
||||||
解:
|
|
||||||
直接计算即可,我们这里直接给出答案: $P+Q = (8, 15)$ , $2P = (14, 15)$
|
|
||||||
|
|
||||||
**4.求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元**
|
|
||||||
|
|
||||||
解:
|
|
||||||
这时候有同学要问了,生成元怎么找啊?其实很简单,直接验证就可以了,(出于强大的直觉和观察力)我们在这里直接验证 $x$ :
|
|
||||||
|
|
||||||
| $x^n$ | $x^n\pmod{x^4+x^3+1}$ |
|
|
||||||
|------|----------|
|
|
||||||
| $x^0$ | $1$ |
|
|
||||||
| $x^1$ | $x$ |
|
|
||||||
| $x^2$ | $x^2$ |
|
|
||||||
| $x^3$ | $x^3$ |
|
|
||||||
| $x^4$ | $x^3 + 1$ |
|
|
||||||
| $x^5$ | $x^3 + x + 1$ |
|
|
||||||
| $x^6$ | $x^3 + x^2 + x + 1$ |
|
|
||||||
| $x^7$ | $1 + x^2 + x$ |
|
|
||||||
| $x^8$ | $x^2 + x + 1$ |
|
|
||||||
| $x^9$ | $x^3 + x^2 + x$ |
|
|
||||||
| $x^{10}$ | $x^3 + x^2 + x + 1$ |
|
|
||||||
| $x^{11}$ | $x^3 + x + 1$ |
|
|
||||||
| $x^{12}$ | $x^3 + 1$ |
|
|
||||||
| $x^{13}$ | $x^3$ |
|
|
||||||
| $x^{14}$ | $x^2$ |
|
|
||||||
|
|
||||||
如上表,由 $x$ 生成的15个非零元素互不相等,所以 $x$ 确实是生成元,非零元的表示如表中所示
|
|
||||||
|
|
||||||
### 5.证明:有限环的特征一定不为0
|
|
||||||
|
|
||||||
证明:请参考课件Chap7.pdf中27-28页
|
|
||||||
|
|
@ -1,19 +0,0 @@
|
||||||
## 说明:
|
|
||||||
本学期(2024年秋季学期)的期末试卷难度**相当**低,本人评价为有手就行,故没有特意记忆所有题目,而是挑出一些有代表性的题目以供参考
|
|
||||||
|
|
||||||
<ol>
|
|
||||||
<li>设 $G=\{a,b,c,e\}$ 是一个群, $H=\{a,e\}$ 是 $G$ 的子群,写出 $H$ 的所有左陪集</li>
|
|
||||||
<li>写出 $R=Z/6Z$ 的所有零因子</li>
|
|
||||||
<li>定义在有限域 $F_{17}$ 上的椭圆曲线 $E: x^3 + 2x + 3 = y^2$ 上有点 $P(2, 7), Q(11, 8)$ , 计算 $P+Q$ , $2P$</li>
|
|
||||||
<li>求域 $F_{16}=F_2[x]/(x^4+x^3+1)$的一个生成元 $g(x)$,并用 $g(x)$ 的幂表示 $F_{16}$ 中的所有非零元</li>
|
|
||||||
<li>证明:有限环的特征一定不为0</li>
|
|
||||||
</ol>
|
|
||||||
|
|
||||||
我们这里再提供一道填空题,一道选择题,以显示这张卷子的**诚意**
|
|
||||||
<ol>
|
|
||||||
<li>设 $G$ 是一个群,对于 $\forall a,b \in G$, $a*b=b*a$, 则 $G$ 是 ____ 群</li>
|
|
||||||
<li>设 $R$ 是一个环,对于 $\forall a,b \in R$, $a+b=b+a$, 则 $R$ 是?
|
|
||||||
A. 整环 B.交换环 C.含幺环 D.环</li>
|
|
||||||
</ol>
|
|
||||||
|
|
||||||
很大程度上,老师的出题和给分是十分宽容的,请大家好好学习这门课程,**数学并不是妖魔鬼怪!**
|
|
||||||
|
|
@ -1,5 +1,5 @@
|
||||||
---
|
---
|
||||||
title: 信息安全数学基础(二)
|
title: 形式语言与自动机理论
|
||||||
category:
|
category:
|
||||||
- 软件工程学院
|
- 软件工程学院
|
||||||
- 课程评价
|
- 课程评价
|
||||||
|
|
@ -9,5 +9,4 @@ tag:
|
||||||
- 抽象代数
|
- 抽象代数
|
||||||
---
|
---
|
||||||
|
|
||||||
### 这门课是抽象代数,但是并没有涉及到抽象代数真正复杂的部分,较为浅尝辄止,所以课程本身的学习难度并不高。
|
|
||||||
### 同样地,这门课实际考试不难,老师会捞,请大家不要害怕。
|
|
||||||
|
|
|
||||||
|
|
@ -1846,76 +1846,76 @@
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/core": {
|
"node_modules/@shikijs/core": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/core/-/core-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/core/-/core-3.12.1.tgz",
|
||||||
"integrity": "sha512-rPfCBd6gHIKBPpf2hKKWn2ISPSrmRKAFi+bYDjvZHpzs3zlksWvEwaF3Z4jnvW+xHxSRef7qDooIJkY0RpA9EA==",
|
"integrity": "sha512-j9+UDQ6M50xvaSR/e9lg212H0Fqxy3lYd39Q6YITYQxfrb5VYNUKPLZp4PN9f+YmRcdpyNAm3obn/tIZ2WkUWg==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/types": "3.12.0",
|
"@shikijs/types": "3.12.1",
|
||||||
"@shikijs/vscode-textmate": "^10.0.2",
|
"@shikijs/vscode-textmate": "^10.0.2",
|
||||||
"@types/hast": "^3.0.4",
|
"@types/hast": "^3.0.4",
|
||||||
"hast-util-to-html": "^9.0.5"
|
"hast-util-to-html": "^9.0.5"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/engine-javascript": {
|
"node_modules/@shikijs/engine-javascript": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/engine-javascript/-/engine-javascript-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/engine-javascript/-/engine-javascript-3.12.1.tgz",
|
||||||
"integrity": "sha512-Ni3nm4lnKxyKaDoXQQJYEayX052BL7D0ikU5laHp+ynxPpIF1WIwyhzrMU6WDN7AoAfggVR4Xqx3WN+JTS+BvA==",
|
"integrity": "sha512-mwif5T3rEBSMn/1m9dNi4WmB4dxH4VfYqreQMLpbFYov8MM3Gus98I549amFMjtEmYDAkTKGP7bmsv1n9t9I+A==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/types": "3.12.0",
|
"@shikijs/types": "3.12.1",
|
||||||
"@shikijs/vscode-textmate": "^10.0.2",
|
"@shikijs/vscode-textmate": "^10.0.2",
|
||||||
"oniguruma-to-es": "^4.3.3"
|
"oniguruma-to-es": "^4.3.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/engine-oniguruma": {
|
"node_modules/@shikijs/engine-oniguruma": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/engine-oniguruma/-/engine-oniguruma-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/engine-oniguruma/-/engine-oniguruma-3.12.1.tgz",
|
||||||
"integrity": "sha512-IfDl3oXPbJ/Jr2K8mLeQVpnF+FxjAc7ZPDkgr38uEw/Bg3u638neSrpwqOTnTHXt1aU0Fk1/J+/RBdst1kVqLg==",
|
"integrity": "sha512-hbYq+XOc55CU7Irkhsgwh8WgQbx2W5IVzHV4l+wZ874olMLSNg5o3F73vo9m4SAhimFyqq/86xnx9h+T30HhhQ==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/types": "3.12.0",
|
"@shikijs/types": "3.12.1",
|
||||||
"@shikijs/vscode-textmate": "^10.0.2"
|
"@shikijs/vscode-textmate": "^10.0.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/langs": {
|
"node_modules/@shikijs/langs": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/langs/-/langs-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/langs/-/langs-3.12.1.tgz",
|
||||||
"integrity": "sha512-HIca0daEySJ8zuy9bdrtcBPhcYBo8wR1dyHk1vKrOuwDsITtZuQeGhEkcEfWc6IDyTcom7LRFCH6P7ljGSCEiQ==",
|
"integrity": "sha512-Y1MbMfVO5baRz7Boo7EoD36TmzfUx/I5n8e+wZumx6SlUA81Zj1ZwNJL871iIuSHrdsheV4AxJtHQ9mlooklmg==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/types": "3.12.0"
|
"@shikijs/types": "3.12.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/themes": {
|
"node_modules/@shikijs/themes": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/themes/-/themes-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/themes/-/themes-3.12.1.tgz",
|
||||||
"integrity": "sha512-/lxvQxSI5s4qZLV/AuFaA4Wt61t/0Oka/P9Lmpr1UV+HydNCczO3DMHOC/CsXCCpbv4Zq8sMD0cDa7mvaVoj0Q==",
|
"integrity": "sha512-9JrAm9cA5hqM/YXymA3oAAZdnCgQf1zyrNDtsnM105nNEoEpux4dyzdoOjc2KawEKj1iUs/WH2ota6Atp7GYkQ==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/types": "3.12.0"
|
"@shikijs/types": "3.12.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/transformers": {
|
"node_modules/@shikijs/transformers": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/transformers/-/transformers-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/transformers/-/transformers-3.12.1.tgz",
|
||||||
"integrity": "sha512-HcJwlvMAyZzOY+ayEAGE891BdJ7Vtio+qdWUTF9ki4d0LIkDb6DBz8ynOWGAEglHv6eQs/WcAWf/h6ina6IgCw==",
|
"integrity": "sha512-crGh3cSZf6mwg3K2W8i79Ja+q4tVClRHdHLnUGi5arS58+cqdzsbkrEZBDMyevf9ehmjFUWDTEwCMEyp9I3z0g==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/core": "3.12.0",
|
"@shikijs/core": "3.12.1",
|
||||||
"@shikijs/types": "3.12.0"
|
"@shikijs/types": "3.12.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@shikijs/types": {
|
"node_modules/@shikijs/types": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/@shikijs/types/-/types-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/@shikijs/types/-/types-3.12.1.tgz",
|
||||||
"integrity": "sha512-jsFzm8hCeTINC3OCmTZdhR9DOl/foJWplH2Px0bTi4m8z59fnsueLsweX82oGcjRQ7mfQAluQYKGoH2VzsWY4A==",
|
"integrity": "sha512-Is/p+1vTss22LIsGCJTmGrxu7ZC1iBL9doJFYLaZ4aI8d0VDXb7Mn0kBzhkc7pdsRpmUbQLQ5HXwNpa3H6F8og==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
|
|
@ -2912,6 +2912,16 @@
|
||||||
"vuepress": "2.0.0-rc.24"
|
"vuepress": "2.0.0-rc.24"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/@vuepress/plugin-redirect/node_modules/commander": {
|
||||||
|
"version": "14.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/commander/-/commander-14.0.0.tgz",
|
||||||
|
"integrity": "sha512-2uM9rYjPvyq39NwLRqaiLtWHyDC1FvryJDa2ATTVims5YAS4PupsEQsDvP14FqhFr0P49CYDugi59xaxJlTXRA==",
|
||||||
|
"dev": true,
|
||||||
|
"license": "MIT",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=20"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/@vuepress/plugin-rtl": {
|
"node_modules/@vuepress/plugin-rtl": {
|
||||||
"version": "2.0.0-rc.112",
|
"version": "2.0.0-rc.112",
|
||||||
"resolved": "https://registry.npmjs.org/@vuepress/plugin-rtl/-/plugin-rtl-2.0.0-rc.112.tgz",
|
"resolved": "https://registry.npmjs.org/@vuepress/plugin-rtl/-/plugin-rtl-2.0.0-rc.112.tgz",
|
||||||
|
|
@ -3070,15 +3080,15 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@vueuse/core": {
|
"node_modules/@vueuse/core": {
|
||||||
"version": "13.8.0",
|
"version": "13.9.0",
|
||||||
"resolved": "https://registry.npmjs.org/@vueuse/core/-/core-13.8.0.tgz",
|
"resolved": "https://registry.npmjs.org/@vueuse/core/-/core-13.9.0.tgz",
|
||||||
"integrity": "sha512-rmBcgpEpxY0ZmyQQR94q1qkUcHREiLxQwNyWrtjMDipD0WTH/JBcAt0gdcn2PsH0SA76ec291cHFngmyaBhlxA==",
|
"integrity": "sha512-ts3regBQyURfCE2BcytLqzm8+MmLlo5Ln/KLoxDVcsZ2gzIwVNnQpQOL/UKV8alUqjSZOlpFZcRNsLRqj+OzyA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@types/web-bluetooth": "^0.0.21",
|
"@types/web-bluetooth": "^0.0.21",
|
||||||
"@vueuse/metadata": "13.8.0",
|
"@vueuse/metadata": "13.9.0",
|
||||||
"@vueuse/shared": "13.8.0"
|
"@vueuse/shared": "13.9.0"
|
||||||
},
|
},
|
||||||
"funding": {
|
"funding": {
|
||||||
"url": "https://github.com/sponsors/antfu"
|
"url": "https://github.com/sponsors/antfu"
|
||||||
|
|
@ -3088,9 +3098,9 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@vueuse/metadata": {
|
"node_modules/@vueuse/metadata": {
|
||||||
"version": "13.8.0",
|
"version": "13.9.0",
|
||||||
"resolved": "https://registry.npmjs.org/@vueuse/metadata/-/metadata-13.8.0.tgz",
|
"resolved": "https://registry.npmjs.org/@vueuse/metadata/-/metadata-13.9.0.tgz",
|
||||||
"integrity": "sha512-BYMp3Gp1kBUPv7AfQnJYP96mkX7g7cKdTIgwv/Jgd+pfQhz678naoZOAcknRtPLP4cFblDDW7rF4e3KFa+PfIA==",
|
"integrity": "sha512-1AFRvuiGphfF7yWixZa0KwjYH8ulyjDCC0aFgrGRz8+P4kvDFSdXLVfTk5xAN9wEuD1J6z4/myMoYbnHoX07zg==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"funding": {
|
"funding": {
|
||||||
|
|
@ -3098,9 +3108,9 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@vueuse/shared": {
|
"node_modules/@vueuse/shared": {
|
||||||
"version": "13.8.0",
|
"version": "13.9.0",
|
||||||
"resolved": "https://registry.npmjs.org/@vueuse/shared/-/shared-13.8.0.tgz",
|
"resolved": "https://registry.npmjs.org/@vueuse/shared/-/shared-13.9.0.tgz",
|
||||||
"integrity": "sha512-x4nfM0ykW+RmNJ4/1IzZsuLuWWrNTxlTWUiehTGI54wnOxIgI9EDdu/O5S77ac6hvQ3hk2KpOVFHaM0M796Kbw==",
|
"integrity": "sha512-e89uuTLMh0U5cZ9iDpEI2senqPGfbPRTHM/0AaQkcxnpqjkZqDYP8rpfm7edOz8s+pOCOROEy1PIveSW8+fL5g==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"funding": {
|
"funding": {
|
||||||
|
|
@ -3591,13 +3601,13 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/commander": {
|
"node_modules/commander": {
|
||||||
"version": "14.0.0",
|
"version": "8.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/commander/-/commander-14.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz",
|
||||||
"integrity": "sha512-2uM9rYjPvyq39NwLRqaiLtWHyDC1FvryJDa2ATTVims5YAS4PupsEQsDvP14FqhFr0P49CYDugi59xaxJlTXRA==",
|
"integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=20"
|
"node": ">= 12"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/connect-history-api-fallback": {
|
"node_modules/connect-history-api-fallback": {
|
||||||
|
|
@ -4533,16 +4543,6 @@
|
||||||
"katex": "cli.js"
|
"katex": "cli.js"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/katex/node_modules/commander": {
|
|
||||||
"version": "8.3.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz",
|
|
||||||
"integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==",
|
|
||||||
"dev": true,
|
|
||||||
"license": "MIT",
|
|
||||||
"engines": {
|
|
||||||
"node": ">= 12"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/kind-of": {
|
"node_modules/kind-of": {
|
||||||
"version": "6.0.3",
|
"version": "6.0.3",
|
||||||
"resolved": "https://registry.npmjs.org/kind-of/-/kind-of-6.0.3.tgz",
|
"resolved": "https://registry.npmjs.org/kind-of/-/kind-of-6.0.3.tgz",
|
||||||
|
|
@ -5929,18 +5929,18 @@
|
||||||
"license": "ISC"
|
"license": "ISC"
|
||||||
},
|
},
|
||||||
"node_modules/shiki": {
|
"node_modules/shiki": {
|
||||||
"version": "3.12.0",
|
"version": "3.12.1",
|
||||||
"resolved": "https://registry.npmjs.org/shiki/-/shiki-3.12.0.tgz",
|
"resolved": "https://registry.npmjs.org/shiki/-/shiki-3.12.1.tgz",
|
||||||
"integrity": "sha512-E+ke51tciraTHpaXYXfqnPZFSViKHhSQ3fiugThlfs/om/EonlQ0hSldcqgzOWWqX6PcjkKKzFgrjIaiPAXoaA==",
|
"integrity": "sha512-eMlxVaXyuNQAQCaMtDKQjKv0eVm+kA6fsZtv9UqKgspP+7lWCVi7SoN+cJq1dawvIDQY7TI3SixamztotM6R6Q==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@shikijs/core": "3.12.0",
|
"@shikijs/core": "3.12.1",
|
||||||
"@shikijs/engine-javascript": "3.12.0",
|
"@shikijs/engine-javascript": "3.12.1",
|
||||||
"@shikijs/engine-oniguruma": "3.12.0",
|
"@shikijs/engine-oniguruma": "3.12.1",
|
||||||
"@shikijs/langs": "3.12.0",
|
"@shikijs/langs": "3.12.1",
|
||||||
"@shikijs/themes": "3.12.0",
|
"@shikijs/themes": "3.12.1",
|
||||||
"@shikijs/types": "3.12.0",
|
"@shikijs/types": "3.12.1",
|
||||||
"@shikijs/vscode-textmate": "^10.0.2",
|
"@shikijs/vscode-textmate": "^10.0.2",
|
||||||
"@types/hast": "^3.0.4"
|
"@types/hast": "^3.0.4"
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue