415 lines
8.4 KiB
Markdown
415 lines
8.4 KiB
Markdown
---
|
||
title: 2023-2024学年下学期期末_含答案
|
||
author:
|
||
- タクヤマ
|
||
- KirisameVanilla
|
||
- zeyi2
|
||
---
|
||
|
||
## 2023-2024学年下学期期末试卷(A)
|
||
|
||
### 一、选择题(共 10 小题,每小题 2 分,共 20 分)
|
||
|
||
1. 设 $m > 1$ 是整数,$(a, m) = 1$,则下列选项中不正确的是
|
||
|
||
A. 若 $b \equiv a \pmod{m}$,则 $\mathrm{ord}_m(b) = \mathrm{ord}_m(a)$.
|
||
B. $a^d \equiv a^k \pmod{m}$ 成立的充要条件是 $d \equiv k \pmod{m}$.
|
||
C. 若 $a' \cdot a \equiv 1 \pmod{m}$,则 $\mathrm{ord}_m(a') = \mathrm{ord}_m(a)$.
|
||
D. 若 $\mathrm{ord}_m(a) = st$,则 $\mathrm{ord}_m(a^s) = t$.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
B
|
||
|
||
$a^d \equiv a^k \pmod{m}$ 成立的充要条件是 $d \equiv k \pmod{(\mathrm{ord}_m(a))}$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
2. 下列哪个数不是模 11 的原根?
|
||
|
||
A. 7
|
||
B. 6
|
||
C. 4
|
||
D. 2
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
C
|
||
|
||
简单验证即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
3. 9 模 14 的指数 $\mathrm{ord}_{14}(9)$ 是
|
||
|
||
A. 6
|
||
B. 3
|
||
C. 2
|
||
D. 1
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
B
|
||
|
||
简单计算即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
4. 设 $a, b, c \in \mathbb{Z}, c \ne 0$,下列结论不正确的是
|
||
|
||
A. 若 $c \mid a, c \mid b$,则 $c \mid (a + b)$.
|
||
B. 若 $c \mid a$,则 $c \mid ab$.
|
||
C. 若 $bc \mid ac$,则 $b \mid a$.
|
||
D. 若 $c \mid (a^2 - b^2)$,则 $c \mid (a - b)$ 或 $c \mid (a + b)$.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
D
|
||
|
||
例如 $a - b = 3, a + b = 5, c = 15$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
5. 模 40 的简化剩余系中元素的个数为
|
||
|
||
A. 16
|
||
B. 28
|
||
C. 39
|
||
D. 40
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
A
|
||
|
||
$\varphi(40) = 16$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
6. 已知 $\mathrm{ord}_{137}(47) = 136$, $\mathrm{ord}_{739}(47) = 82$,则 $\mathrm{ord}_{101243}(47) =$
|
||
|
||
A. 136
|
||
B. 82
|
||
C. 5576
|
||
D. 11152
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
C
|
||
|
||
因为 $(137, 739) = 1, 137*739 = 101243$, 故 $\mathrm{ord}_{101243}(47) = [\mathrm{ord}_{137}(47), \mathrm{ord}_{739}(47)] = [136, 82] = 5576$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
7. 设 $n$ 为整数,则下列选项中一定可以被 6 整除的是
|
||
|
||
A. $n(n^2 + 1)$
|
||
B. $n(n^2 - 1)$
|
||
C. $n(n + 1)$
|
||
D. $n(n - 1)$
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
B
|
||
|
||
$n(n^2 - 1) = n(n-1)(n+1)$,因子中必然存在2与3,故能被6整除
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
8. 下列选项中正确的是
|
||
|
||
A. 若 $m = 1458$,则模 $m$ 的原根不存在。
|
||
B. 1275 是 Carmichael 数。
|
||
C. 2047 是对于基 2 的拟素数。
|
||
D. 给定整数 $m > 1$,$(a,m) = (b,m) = 1$,则 $\mathrm{ord}_m(a \cdot b) = \mathrm{ord}_m(a)\ \cdot \mathrm{ord}_m(b)$.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
C
|
||
|
||
简单验证即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
9. 模 24 的一个简化剩余系为
|
||
|
||
A. $\{-1, 2, 3, 5, 7, 9, 19, 20\}$
|
||
B. $\{-7, -1, 9, 13, 17, 2, 23\}$
|
||
C. $\{1, 5, 7, 11, 13, 17, 19, 23\}$
|
||
D. $\{3, 7, 11, 13, 17, 19, 23\}$
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
C
|
||
|
||
由定义验证即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
10. 以下哪个数不是模 71 的二次剩余?
|
||
|
||
A. 35
|
||
B. 36
|
||
C. 37
|
||
D. 38
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
A
|
||
|
||
计算勒让德符号即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
### 二、填空题(共 10 小题,每小题 3 分,共 30 分)
|
||
|
||
1. 13 模 21 的指数 $\mathrm{ord}_{21}(13) =$ ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
2
|
||
|
||
$13^2 = 169 \equiv 1 \pmod{21}$,故 $\mathrm{ord}_{21}(13) = 2$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
2. $3^{865749} \mod 11 =$ ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
4
|
||
|
||
因为 $(3, 11) = 1$,故 $3^{10} \equiv 1 \pmod{11}$,则 $3^{865749} \equiv 3^9 \equiv 4 \pmod{11}$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
3. 同余方程 $17x \equiv 14 \pmod{21}$ 的解为 ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
$x \equiv 7 \pmod{21}$
|
||
|
||
先计算17在模21下的逆元,简单计算得到 $17 * 5 \equiv 1 \pmod{21}$,再变形原方程为 $5 * 17x \equiv 5 * 14 \pmod{21}$,即 $x \equiv 70 \equiv 7 \pmod{21}$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
4. 已知 $a = 123, b = 321$,则有 $s =$ ________, $t =$ ________,使得 $sa + tb = (a, b) =$ ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
$s = 47, t = -18, (a,b) = 3$
|
||
|
||
进行exgcd即可,算法参见教材第一章
|
||
</details>
|
||
|
||
***
|
||
|
||
5. 下面的方程组的解为 ________.
|
||
|
||
$$
|
||
\begin{cases}
|
||
3x + 5y \equiv 38 \pmod{47}\\
|
||
x - y \equiv 10 \pmod{47}
|
||
\end{cases}
|
||
$$
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
$x \equiv 11 \pmod{47}, y \equiv 1 \pmod{47}$
|
||
|
||
变形后解一元一次同余方程即可
|
||
</details>
|
||
|
||
***
|
||
|
||
6. $\left( \frac{65}{103} \right) =$ ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
-1
|
||
|
||
简单计算勒让德符号
|
||
</details>
|
||
|
||
***
|
||
|
||
7. 同余方程 $6x \equiv 3 \pmod{9}$ 的解为 ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
$x \equiv 2, 5, 8 \pmod{9}$
|
||
|
||
做法同3,注意多解
|
||
</details>
|
||
|
||
***
|
||
|
||
8. 模 29 的最小正原根为 ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
2
|
||
|
||
简单检验计算即可
|
||
</details>
|
||
|
||
***
|
||
|
||
9. $2^{2002}$ 被 7 除所得的余数为 ________.
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
2
|
||
|
||
做法同2
|
||
</details>
|
||
|
||
***
|
||
|
||
10. 已知 443 是素数,同余方程 $x^2 \equiv 26 \pmod{443}$ 有 ________ 个解。
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
0
|
||
|
||
计算勒让德符号 $\left( \frac{26}{443} \right)$即可
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
### 三、计算题(共 25 分)
|
||
|
||
1. 判断方程 $x^{15} \equiv 14 \pmod{41}$ 解的个数,并求出所有解(15 分)
|
||
|
||
模 41 以 6 为原根的指数表如下,其中第一列表示十位数,第一行表示个位数,交叉位置表示该数的指数:
|
||
|
||
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|
||
|-----|---|---|---|---|---|---|---|---|---|---|
|
||
| 0 | | 40| 26| 15| 12| 22| 1 | 39| 38| 30|
|
||
| 1 | 8 | 3 | 27| 31| 25| 37| 24| 33| 16| 9 |
|
||
| 2 | 34| 14| 29| 36| 13| 4 | 17| 5 | 11| 7 |
|
||
| 3 | 23| 28| 10| 18| 19| 21| 2 | 32| 35| 6 |
|
||
| 4 | 20| | | | | | | | | |
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
$\because\varphi(41)=40,\ (\varphi(41),15)=5$
|
||
$\therefore\text{方程有5个解}$
|
||
$x^{15}\equiv14\ (mod\ 41)$
|
||
查表得 $14\equiv6^{25}\ (mod\ 41)$
|
||
令 $x\equiv\ 6^a\ (mod\ 41)$
|
||
则有 $6^{a^{15}}\equiv6^{25}\ (mod\ 41)$
|
||
即 $6^{15a}\equiv6^{25}\ (mod\ 41)$
|
||
则 $15a\equiv25\ (mod\ 40)$
|
||
化为 $3a\equiv5\ (mod\ 8)$,该式解为 $a\equiv7\ (mod\ 8)$
|
||
故解为 $a\equiv7,15,23,31,39\ (mod\ 40)$
|
||
查表得原式解为 $x\equiv29,3,30,13,7\ (mod\ 41)$
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
2. 计算 Legendre 符号(10 分)
|
||
|
||
1) $\left( \frac{33}{317} \right)$
|
||
2) $\left( \frac{286}{563} \right)$
|
||
|
||
<details>
|
||
<summary>解:</summary>
|
||
|
||
勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1,-1
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
### 四、证明题(25 分)
|
||
|
||
1. 证明:121 是对基 3 的拟素数。(10 分)
|
||
|
||
<details>
|
||
<summary>证明:</summary>
|
||
|
||
要证121是基3的拟素数,即证 $3^{120}\equiv1\ (mod\ 121)$
|
||
|
||
一种常见的思路:
|
||
显然121与3互素,由欧拉定理, $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
|
||
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
|
||
|
||
另一种可能性:
|
||
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
|
||
|
||
</details>
|
||
|
||
***
|
||
|
||
2. 设 $n$ 为偶数, $p$ 为素数, 且 $p \mid n^{4} + 1$, 证明 $p \equiv 1 \pmod 8$ (15 分)
|
||
|
||
<details>
|
||
<summary>证明:</summary>
|
||
|
||
显然p不为2
|
||
|
||
$\because p|n^4+1$
|
||
$\therefore n^4+1\equiv 0\ (mod \ p)$
|
||
$\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)$
|
||
$\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)$
|
||
|
||
由二次剩余的定义,知式子右边是模p的二次剩余
|
||
$\therefore(\frac{2n^2}{p})=1$
|
||
|
||
又 $\because (n,p)=1$
|
||
$\therefore(\frac{2}{p})=1$
|
||
$\therefore p\equiv 1,-1\ (mod\ 8)$
|
||
|
||
类似的,有 $n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1$
|
||
分别检验 $p\equiv 1\ (mod\ 8)$ 与 $p\equiv -1\ (mod\ 8)$,发现只有 $p\equiv 1\ (mod\ 8)$满足条件,得证
|
||
</details>
|