55 lines
1.9 KiB
Markdown
55 lines
1.9 KiB
Markdown
注:扫描件中模糊处均不影响做题
|
||
|
||
# 一、选择题
|
||
## BCBDA CBCCA
|
||
|
||
# 二、填空题
|
||
1. 2
|
||
2. 4
|
||
3. $x\equiv7\ (mod\ 11)$
|
||
4. $s=47,t=-18,(a,b)=3$
|
||
5. $x\equiv11\ (mod\ 47), y\equiv1\ (mod\ 47)$
|
||
6. -1
|
||
7. $x\equiv2,5,8\ (mod\ 9)$
|
||
8. 2
|
||
9. 2
|
||
10. 0
|
||
|
||
# 三、计算题
|
||
1. $\because\varphi(41)=40,\ (\varphi(41),15)=5$
|
||
$\therefore\ $方程有5个解
|
||
\
|
||
$x^{15}\equiv14\ (mod\ 41)$
|
||
查表得 $14\equiv6^{25}\ (mod\ 41)$
|
||
令 $x\equiv\ 6^a\ (mod\ 41)$
|
||
则有 $6^{a^{15}}\equiv6^{25}\ (mod\ 41)$
|
||
即 $6^{15a}\equiv6^{25}\ (mod\ 41)$
|
||
则 $15a\equiv25\ (mod\ 40)$
|
||
化为 $3a\equiv5\ (mod\ 8)$,该式解为 $a\equiv7\ (mod\ 8)$
|
||
故解为 $a\equiv7,15,23,31,39\ (mod\ 40)$
|
||
查表得原式解为 $x\equiv29,3,30,13,7\ (mod\ 41)$
|
||
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1,-1
|
||
|
||
# 四、证明题
|
||
|
||
1.要证121是基3的拟素数,即证 $3^{120}\equiv1\ (mod\ 121)$
|
||
一种常见的思路:
|
||
显然121与3互素,由欧拉定理, $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
|
||
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
|
||
另一种可能性:
|
||
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
|
||
2. 显然p不为2
|
||
$\because p|n^4+1$
|
||
$\therefore n^4+1\equiv 0\ (mod \ p)$
|
||
$\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)$
|
||
$\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)$
|
||
由二次剩余的定义,知式子右边是模p的二次剩余
|
||
$\therefore(\frac{2n^2}{p})=1$
|
||
又 $\because (n,p)=1$
|
||
$\therefore(\frac{2}{p})=1$
|
||
$\therefore p\equiv 1,-1\ (mod\ 8)$
|
||
|
||
类似的,有 $n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1$
|
||
分别检验 $p\equiv 1\ (mod\ 8)$ 与 $p\equiv -1\ (mod\ 8)$,发现只有 $p\equiv 1\ (mod\ 8)$满足条件,得证
|
||
|