SharedCourses/docs/courses/软件工程学院/信息安全数学基础(一)/期末试卷/手做答案.md

55 lines
1.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

注:扫描件中模糊处均不影响做题
# 一、选择题
## BCBDA CBCCA
# 二、填空题
1. 2
2. 4
3. $x\equiv7\ (mod\ 11)$
4. $s=47,t=-18,(a,b)=3$
5. $x\equiv11\ (mod\ 47), y\equiv1\ (mod\ 47)$
6. -1
7. $x\equiv2,5,8\ (mod\ 9)$
8. 2
9. 2
10. 0
# 三、计算题
1. $\because\varphi(41)=40,\ (\varphi(41),15)=5$
$\therefore\ $方程有5个解
\
$x^{15}\equiv14\ (mod\ 41)$
查表得 $14\equiv6^{25}\ (mod\ 41)$
令 $x\equiv\ 6^a\ (mod\ 41)$
则有 $6^{a^{15}}\equiv6^{25}\ (mod\ 41)$
即 $6^{15a}\equiv6^{25}\ (mod\ 41)$
则 $15a\equiv25\ (mod\ 40)$
化为 $3a\equiv5\ (mod\ 8)$,该式解为 $a\equiv7\ (mod\ 8)$
故解为 $a\equiv7,15,23,31,39\ (mod\ 40)$
查表得原式解为 $x\equiv29,3,30,13,7\ (mod\ 41)$
2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1-1
# 四、证明题
1.要证121是基3的拟素数即证 $3^{120}\equiv1\ (mod\ 121)$
一种常见的思路:
显然121与3互素由欧拉定理 $\varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)$
所以 $3^{120}\equiv3^{10}\ (mod\ 121)$, $3^{10}$显然可以手动验算,得证
另一种可能性:
尝试逐个检验后发现 $3^{5}=243\equiv1\ (mod\ 121),5|120$,直接得证
2. 显然p不为2
$\because p|n^4+1$
$\therefore n^4+1\equiv 0\ (mod \ p)$
$\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)$
$\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)$
由二次剩余的定义知式子右边是模p的二次剩余
$\therefore(\frac{2n^2}{p})=1$
又 $\because (n,p)=1$
$\therefore(\frac{2}{p})=1$
$\therefore p\equiv 1,-1\ (mod\ 8)$
类似的,有 $n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1$
分别检验 $p\equiv 1\ (mod\ 8)$ 与 $p\equiv -1\ (mod\ 8)$,发现只有 $p\equiv 1\ (mod\ 8)$满足条件,得证