125 lines
3.7 KiB
Markdown
125 lines
3.7 KiB
Markdown
---
|
||
title: 学硕_高级机器学习
|
||
---
|
||
|
||
授课教师:赵静
|
||
|
||
- [作业](https://drive.vanillaaaa.org/SharedCourses/postgraduate/计算机科学与技术/学硕_高级机器学习/作业)
|
||
- [课件](https://drive.vanillaaaa.org/SharedCourses/postgraduate/计算机科学与技术/学硕_高级机器学习/课件)
|
||
|
||
教师授课 (前 13 周 ) + 学生分享( 后 4 周 )
|
||
|
||
考核:平时成绩 40%+ 最终报告 60%
|
||
|
||
平时成绩
|
||
|
||
按小组介绍 2021 年 ICML 、 NeurIPS 、 IJCAI 、 AAAI Tutorial
|
||
|
||
每 组 45 分钟,每周两组
|
||
|
||
按 小组打分,学生互评
|
||
|
||
期末考核:
|
||
|
||
机器学习 相关的论文
|
||
|
||
按照正规会议期刊格式撰写,提供模板, 6 页上限
|
||
|
||
• 综述论文 ( 60-80 分)
|
||
|
||
• 近 5 年顶会刊算法 复现,需增加原文之外的数据集( 80-90 分)
|
||
|
||
• 创新性论文( 90-100 分)
|
||
|
||
第一章 简单机器学习算法概览
|
||
|
||
学时:10
|
||
|
||
本章节内容概述:回顾模式识别与机器学习基础算法,包括
|
||
|
||
1.1贝叶斯决策(2学时),
|
||
|
||
1.2 线性分类与回归模型(2学时),
|
||
|
||
1.3支持向量机与拉格朗日对偶优化(2学时),
|
||
|
||
1.4 EM算法与变分推理(2学时),
|
||
|
||
1.5主成分分析与聚类(2学时)
|
||
|
||
第二章 高斯过程相关模型²
|
||
|
||
学时:6
|
||
|
||
本章节内容概述:介绍高斯过程相关模型原理,包括
|
||
|
||
2.1高斯过程 (2学时),
|
||
|
||
2.2高斯过程潜变量模型 (2学时),
|
||
|
||
2.3深度高斯过程和多视图高斯过程 (2学时),
|
||
|
||
第三章 概率时序模型²
|
||
|
||
学时:4
|
||
|
||
本章节内容概述:介绍概率时序模型,包括
|
||
|
||
3.1隐马尔科夫模型(2学时),
|
||
|
||
3.2条件随机场 (2学时)
|
||
|
||
第四章 深度学习模型²
|
||
|
||
学时:4
|
||
|
||
本章节内容概述:介绍神经网络模型原理及典型的生成式神经网络,包括
|
||
|
||
4.1深度神经网络 (2学时),
|
||
|
||
4.2变分自编码 (1学时),
|
||
|
||
4.3生成式对抗网络 (1学时)
|
||
|
||
第5章 近似推理与优化
|
||
|
||
学时:4
|
||
|
||
本章节内容概述:介绍概率模型的近似推理与基于梯度的随机优化算法,包括
|
||
|
||
5.1采样方法 (2学时),
|
||
|
||
5.2随机梯度优化(2学时)。
|
||
|
||
第六章 学生分享展示
|
||
|
||
学时:8
|
||
|
||
报告参考范围
|
||
|
||
1. [Unsupervised Learning for RL](https://icml.cc/Conferences/2021/Schedule?showEvent=10843)
|
||
|
||
2. [Natural-XAI: Explainable AI with Natural Language Explanations](https://icml.cc/Conferences/2021/Schedule?showEvent=10835)
|
||
|
||
3. [Self-Attention for Vision](https://icml.cc/Conferences/2021/Schedule?showEvent=10842)
|
||
|
||
4. [A Journey Through the Opportunity of Low Resourced Natural Language Processing — An African Lens](https://nips.cc/Conferences/2021/Schedule?showEvent=21898)
|
||
|
||
5. [Self-Supervised Learning: Self-Prediction and Contrastive Learning](https://nips.cc/Conferences/2021/Schedule?showEvent=21895)
|
||
|
||
6. [The Art of Gaussian Processes: Classical and Contemporary](https://nips.cc/Conferences/2021/Schedule?showEvent=21890)
|
||
|
||
7. [Deep Learning for Recommendations: Fundamentals and Advances](https://advanced-recommender-systems.github.io/ijcai2021-tutorial/)
|
||
|
||
8. [Learning with Noisy Supervision](https://wsl-workshop.github.io/ijcai21-tutorial#slides)
|
||
|
||
9. [Towards Robust Deep Learning Models: Verification, Falsification, and Rectification](https://tutorial-ijcai.trustai.uk/)
|
||
|
||
10. [Continual Learning Dialogue Systems - Learning on the Job after Model Deployment](https://www.cs.uic.edu/~liub/IJCAI21-Continual-Learning-Dialogue-Systems-after-Deployment.html)
|
||
|
||
11. [NS4NLP-- Neuro-Symbolic methods for Natural Language Processing](https://www.cs.purdue.edu/homes/pachecog/tutorials/ns4nlp/)
|
||
|
||
12. [MH2: Commonsense Knowledge Acquisition and Representation](https://usc-isi-i2.github.io/AAAI21Tutorial/)
|
||
|
||
13. Dealing with Bias and Fairness in AI/ML/Data Science Systems
|