SharedCourses/docs/undergraduate/软件工程学院/计算机逻辑基础/2024-2025学年上学期期末.md

51 lines
1.3 KiB
Markdown

---
title: 2024-2025学年上学期期末
category:
- 软件工程学院
- 试卷
tag:
- 期末
author:
- タクヤマ
---
## 2024-2025学年上学期期末(不全)
### 简答题
1. What is the definition of validity for a propositional logic formula?
2. Please explain how to determine whether a given propositional logic formula with CNF is valid.
3. Please illustrate the different treatment for free and bound variables in the semantical evaluation of a predicate logic formula.
4. Please state the key idea of program verification using model checking techniques.
### 计算题
1. Convert the following formula into CNF and draw its parse tree: $(p \vee q \rightarrow r ) \rightarrow r \vee s$
2. Translate the following statements into predicate logic formula:
3. model checking
### 证明题
1. Prove the following statement: $(p \wedge q) \rightarrow r \vdash (p \rightarrow r) \vee (q \rightarrow r)$
2. Prove the following sequent doesn't hold using semantical evaluation:
$\forall x \exists y P(x,y) \models \exists y \forall x P(x,y)$
3. Prove the total correctness of the following hoare triplet: $\\{ x \geq 0 \wedge y > 0 \\} Div \\{ y=d*x+r \wedge r < y \\}$
```cpp
Div:
{pre-condition}
r = y;
d = 0;
while (r >= y) {
r = r - y;
d = d + 1;
}
{post-condition}
```