SharedCourses/docs/courses/软件工程学院/信息安全数学基础(一)/期末试卷/手做答案.md

1.9 KiB
Raw Blame History

注:扫描件中模糊处均不影响做题

一、选择题

BCBDA CBCCA

二、填空题

  1. 2
  2. 4
  3. x\equiv7\ (mod\ 11)
  4. s=47,t=-18,(a,b)=3
  5. x\equiv11\ (mod\ 47), y\equiv1\ (mod\ 47)
  6. -1
  7. x\equiv2,5,8\ (mod\ 9)
  8. 2
  9. 2
  10. 0

三、计算题

  1. \because\varphi(41)=40,\ (\varphi(41),15)=5
    \therefore\ 方程有5个解

    x^{15}\equiv14\ (mod\ 41)
    查表得 14\equiv6^{25}\ (mod\ 41)
    x\equiv\ 6^a\ (mod\ 41)
    则有 6^{a^{15}}\equiv6^{25}\ (mod\ 41)
    6^{15a}\equiv6^{25}\ (mod\ 41)
    15a\equiv25\ (mod\ 40)
    化为 3a\equiv5\ (mod\ 8),该式解为 a\equiv7\ (mod\ 8)
    故解为 a\equiv7,15,23,31,39\ (mod\ 40)
    查表得原式解为 x\equiv29,3,30,13,7\ (mod\ 41)
  2. 勒让德符号的计算较为简单,这里不给出解题过程,两问的答案分别是-1-1

四、证明题

1.要证121是基3的拟素数即证 3^{120}\equiv1\ (mod\ 121)
一种常见的思路:
显然121与3互素由欧拉定理 \varphi(121)=11^2-11=110,3^{\varphi(121)}=3^{110}\equiv1\ (mod\ 121)
所以 3^{120}\equiv3^{10}\ (mod\ 121), 3^{10}显然可以手动验算,得证
另一种可能性: 尝试逐个检验后发现 3^{5}=243\equiv1\ (mod\ 121),5|120,直接得证
2. 显然p不为2
\because p|n^4+1
\therefore n^4+1\equiv 0\ (mod \ p)
\therefore n^4+2n^2+1\equiv 2n^2\ (mod \ p)
\therefore (n^2+1)^2\equiv 2n^2\ (mod \ p)
由二次剩余的定义知式子右边是模p的二次剩余
\therefore(\frac{2n^2}{p})=1
\because (n,p)=1
\therefore(\frac{2}{p})=1
\therefore p\equiv 1,-1\ (mod\ 8)

类似的,有 n^4-2n^2+1\equiv -2n^2\ (mod \ p),(\frac{-2}{p})=1
分别检验 p\equiv 1\ (mod\ 8)p\equiv -1\ (mod\ 8),发现只有 p\equiv 1\ (mod\ 8)满足条件,得证